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Standard Brownian motion (B(t), 0 ≤ t <∞) has the properties

Sample paths t → B(t) are continuous

B(t) is a martingale

B2(t)− t is a martingale.

Levy’s theorem states that Brownian motion is the only process with
these properties. In other words, to check that a given process is
Brownian motion, we don’t need to check the “Normal distributions and
independent increments” properties in the definition; instead we can just
check the properties above, for a filtration (F(t), 0 ≤ t <∞).

We will work more intuitively in terms of “infinitesimal increments”. For
a process X (t) write the increment X (t + dt)− X (t) as dX (t). The two
martingale properties above can be rewritten as

E(dB(t)|F(t)) = 0

E((dB(t))2 |F(t)) = dt.

Suppose we are given two functions µ : R→ R and σ : R→ (0,∞). It
can be shown that (under minor assumptions on these functions) there
exists a unique process (X (t), 0 ≤ t <∞) with the properties

Sample paths t → X (t) are continuous

E(dX (t)|F(t)) = µ(Xt)dt

E((dX (t))2 |F(t)) = σ2(Xt)dt
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In other words the process (X (t), 0 ≤ t <∞) is the continuous-time
Markov process specified by

Sample paths t → X (t) are continuous

E(dX (t)|X (t) = x) = µ(x)dt

var (dX (t) |X (t) = x) = σ2(x)dt

This is analogous to specifying a Markov chain by specifying its transition
matrix. Such processes are called diffusions.

Standard Brownian motion B(t) is the case µ(x) ≡ 0, σ(x) ≡ 1. Recall
that for constants µ, σ we can define X (t) = µt + σB(t); this is the case
µ(x) ≡ µ, σ(x) ≡ σ. In this case X (t) has a Normal distribution but in
general it does not.
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Textbooks develop the theory of such processes – there are formulas for
hitting probabilities and mean hitting times, for instance. In this lecture I
will just show how diffusions can arise as scaling limits of discrete Markov
processes, analogous to the way we introduced Brownian motion as the
scaling limit of simple random walk.
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Example: Wright-Fisher model with mutation

k genes per generation

each gene is allele A or allele B

each gene is a copy of a uniform random gene from the previous
generation, except that . . .

A mutates to B with probability α/k

B mutates to A with probability β/k

Write X
(k)
n for number of A alleles in generation n.

We want to rescale the process by considering the proportion of genes
that are A, and to take 1 generation as a time interval δ in “rescaled time
units” – δ depends on k and we will calculate later what it is. So the
rescaled process is

Y
(k)
nδ = k−1X (k)

n .
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To find the diffusion which is the rescaled limit (as k →∞), what we
need to do is to calculate (to first order) the change in mean and
variance in one step (generation, in this example) of the discrete process,
then rescale.
In this example we have [board]

E(X
(k)
1 − x |X (k)

0 = x) = 0− α
k x + β

k (k − x)

var (X
(k)
1 − x |X (k)

0 = x) ≈ k x
k
k−x
k + 0.

Restating this in terms of Y = X/k we see [board]

E(Y
(k)
δ − y |Y (k)

0 = y) ≈ δ(−αy + β(1− y))

var (Y
(k)
δ − y |Y (k)

0 = y) ≈ δy(1− y)

where we have chosen δ = 1/k . This says that the process (Y
(k)
t ) is

approximately the diffusion with

µ(y) = −αy + β(1− y), σ2(y) = y(1− y)

whose state space is [0, 1].
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Ehrenfest urn model.

2k balls, two boxes.

Pick uniform random ball, more to other box.

Study X
(k)
n = number of balls in left box after n steps. We know the

stationary distribution is Binomial(2k , 1/2).

Rescale by defining

Y
(k)
nδ = (X (k)

n − k)/
√
k

for δ to be calculated later.

To find the diffusion which is the rescaled limit, what we need to do is to
calculate (to first order) the change in mean and variance in one step of
the discrete process, then rescale.
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E(X
(k)
1 − x |X (k)

0 = x) = k−x
k

var (X
(k)
1 − x |X (k)

0 = x) ≈ 1 for x = k ± O(k1/2).

and then rescaling give [board]

E(Y
(k)
δ − y |Y (k)

0 = y) ≈ −δy

var (Y
(k)
δ − y |Y (k)

0 = y) ≈ δ

for δ = 1/k.

This says that the process (Y
(k)
t ) is approximately the diffusion with

µ(y) = −y , σ2(y) = 1

whose state space is (−∞,∞). This is the Ornstein-Uhlenbeck
process.
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Here is the first interesting piece of “theory” for diffusions. Let (Yt) be
the diffusion with given drift and variance rate functions µ(y), σ2(y).
Let f be a smooth strictly increasing function R→ R. Then Xt = f (Yt)
is also a diffusion, and we can calculate its functions

µ̂(x) = f ′(y)µ(y) + 1
2 f
′′(y)σ2(y)

σ̂(x) = f ′(y)σ(y)

where x = f (y), y = f −1(x).

This allows us to use martingale arguments to calculate hitting
probabilities. [board]

David Aldous Lecture 38


