Lecture 35

David Aldous

23 November 2015

The M/G/1 queue model is

- Customers arrive at times of a rate- λ Poisson point process
- Service times Y_{1}, Y_{2}, \ldots are IID.
- Write $\nu=\mathbb{E} Y$ and note that $1 / \nu$ is "service rate".
- $X(t)=$ number of customers at time t.
- 1 server.

Here $(X(t), 0 \leq t<\infty)$ is not a continuous-time Markov chain. But we can do some calculations.

Idle and busy periods. The server alternates idle and busy periods lengths $I_{1}, B_{1}, I_{2}, B_{2}, \ldots$ We know $\mathbb{E} I_{1}=1 / \lambda$. How do we calculate $\mathbb{E} B_{1}$?

Method 1. Recall the cycle trick. Write T_{1}, T_{2}, \ldots for the times between successive "renewals", suppose there is a "reward" R_{i} associated with the renewal interval T_{i}, and suppose the sequence of pairs $\left(T_{i}, R_{i}\right), i=1,2, \ldots$ is IID. Then

$$
\text { long-run average reward per unit time }=\mathbb{E} R / \mathbb{E} T \text {. }
$$

To use this, write $T_{i}=I_{i}+B_{i}$ and $R_{i}=B_{i}$. So long-run average proportion of time server is busy $=\mathbb{E} B_{1} /\left(\mathbb{E} I_{1}+\mathbb{E} B_{1}\right)$.

Demand for service per unit time $=\lambda \times \mathbb{E} Y=$ proportion of time server is busy. So

$$
\lambda \nu=\frac{\mathbb{E} B_{1}}{1 / \lambda+\mathbb{E} B_{1}}
$$

We solve to get

$$
\mathbb{E} B_{1}=\frac{\nu}{1-\lambda \nu} .
$$

Method 2. Consider
$N^{*}=$ number of arrivals during a service period and argue [board]

$$
\mathbb{E}\left(B_{1} \mid N^{*}=n\right)=\nu+n \mathbb{E} B_{1} .
$$

Then [board]

$$
\mathbb{E} B_{1}=\nu+\left(\mathbb{E} N^{*}\right) \mathbb{E} B_{1}
$$

which we can solve to get

$$
\mathbb{E} B_{1}=\frac{\nu}{1-\mathbb{E} N^{*}} .
$$

Then

$$
\mathbb{E}\left(N^{*} \mid Y_{1}=t\right)=\lambda t
$$

and so

$$
\mathbb{E} N^{*}=\lambda \nu
$$

Here is a third method which calculates something different. There is a discrete-time Markov chain associated with the M/G/1 queue: $X_{n}=$ number of customers just after the departure of the n 'th customer.

Here [board]

$$
X_{n+1}=\max \left(X_{n}-1,0\right)+A_{n}
$$

$A_{n}=$ number of arrivals during next service period
and the A_{n} are IID.
As a special property of the $\mathrm{M} / \mathrm{G} / 1$ queue, the stationary distribution of $\left(X_{n}\right)$ is the same as the equilibrium distribution of "number of customers" in the original queue process. Using this fact we can calculate the expectation of "number of customers".
[calculation on board - follows [PK] sec. 9.3.1].

