Lecture 34

David Aldous

20 November 2015
[from Lecture 22]
Continuous-time Birth-and-death chains.
These have states $\{0,1,2, \ldots, N\}$ or $\{0,1,2, \ldots \ldots\}$ and the only transitions are $i \rightarrow i \pm 1$. Write

$$
\lambda_{i}=q_{i, i+1} \quad(\text { birth rate }) ; \quad \mu_{i}=q_{i, i-1} \quad \text { (death rate) } .
$$

For these chains we can solve the detailed balance equations:

$$
w_{i}=\prod_{j=1}^{i} \frac{\lambda_{j-1}}{\mu_{j}} ; \quad w_{0}=1, w=\sum_{i \geq 0} w_{i}
$$

So the stationary distribution is

$$
\pi_{i}=w_{i} / w
$$

provided (in the infinite-state case) $w<\infty$.
[from Lecture 22]
Example. Take $\lambda_{i}=\lambda, \mu_{i}=\mu, \lambda<\mu$. Then the stationary distribution π is the shifted Geometric ($p=1-\lambda / \mu$) distribution.

This is the $M / M / 1$ queue model, as follows.

- Customers arrive at times of a rate- λ Poisson point process
- Service times are IID Exponential (μ).
- $X(t)=$ number of customers at time t.
- 1 server.

We can calculate many quantities associated with the stationary process:

- Long-run proportion of time server is idle $=1-\lambda / \mu$.
- Mean number of customers $=\frac{\lambda}{\mu-\lambda}$.
- Mean waiting time (until starting service) for customer $=\frac{\lambda / \mu}{\mu-\lambda}$.
- Mean total time (until ending service) for customer $=\frac{1}{\mu-\lambda}$.
- Mean busy period for server $=\frac{1}{\mu-\lambda}$.

We implicitly assumed the rule for "order of service" is first-in first-out - FIFO but the results above do not depend on this rule. Changing the rule to "last-in first-out" would change other aspects such as "distribution of time in system".

Many more complicated queue models have been studied - we will look at a few of them. First here is a

General principle. For a system in equilibrium (stationary distribution)

$$
L=\lambda W, \quad \text { where }
$$

$\lambda=$ arrival rate $=\mathbb{E}$ (number of arriving customers per unit time).
$W=$ average time in system per customer.
$L=$ average number of customers in the system.
[board]

The $M / M / s$ queue model has s servers instead of 1 server. But with a single waiting line.

- Customers arrive at times of a rate- λ Poisson point process
- Service times are IID Exponential(μ).
- $X(t)=$ number of customers at time t.
- s servers.

Here $X(t)$ is again a continuous-time Markov chain but with transition rates

$$
q_{i, i+1}=\lambda, \quad q_{i, i-1}=\mu \min (i, s) .
$$

Now the stationary distribution is [board]

$$
\begin{aligned}
w_{i} & =\frac{1}{j!}(\lambda / \mu)^{i}, 0 \leq i \leq s \\
& =\frac{1}{s!}(\lambda / \mu)^{s}(\lambda / s \mu)^{i-s}, \quad i \geq s \\
\pi_{i} & =w_{i} / w, \quad w=\sum_{j \geq 0} w_{j}
\end{aligned}
$$

provided $\lambda<s \mu$.

General principle. In a queueing system, the traffic intensity ρ is defined as (arrival rate) / (maximum service rate).

So for M/M/s

$$
\rho=\lambda /(s \mu)
$$

A system will be stable (has a stationary distribution) if $\rho<1$, but unstable (length of queue $\rightarrow \infty$) if $\rho>1$.

We can calculate the same quantities for $\mathrm{M} / \mathrm{M} / \mathrm{s}$ as we did for $\mathrm{M} / \mathrm{M} / 1$.
A trick that makes the calculation simpler is to write the tail of the stationary distribution of X (number of customers) as

$$
\mathbb{P}(X=s+i)=\mathbb{P}(X \geq s) \mathbb{P}(G=i)
$$

where G has shifted $\operatorname{Geometric}\left(p=1-\frac{\lambda}{\mu s}\right)$ distribution.
Another trick is that the argument for our first general principle $L=\lambda W$ also shows

$$
L_{0}=\lambda W_{0}
$$

where
$W_{0}=$ average waiting time per customer
$L_{0}=$ average number of customers waiting in the system.
[calculation on board]

We get a formula for $W=$ average time in $M / M / s$ system per customer.

$$
W=\frac{\mathbb{P}(X \geq s)}{\mu s-\lambda}+\frac{1}{\mu}
$$

Note we can calculate $\mathbb{P}(X \geq s)$ in terms of w or π_{0}.

