Lecture 32

David Aldous

16 November 2015

A family of $\mathrm{RVs}(G(t))$ is called Gaussian or a Gaussian process if the joint distribution of any finite set of these RVs is multivariate Normal.
From STAT134 facts about multivariate Normal distributions we can read off facts about Gaussian processes.

- If a process is known to be Gaussian, then its distribution is determined by its mean/covariance structure, that is by the functions $\mathbb{E} G(t)$ and $\operatorname{cov}(G(s), G(t))$.
- A RV defined as a linear combination $X=\sum_{i} a_{i} G\left(t_{i}\right)$ or $X=\int a(t) G(t) d t$ has Normal distribution, and including X in the original family $(G(t))$ preserves the Gaussian property.
- Within a Gaussian family, if one RV is uncorrelated with a subfamily, then it is independent of that subfamily.
Standard BM $(B(t), 0 \leq t<\infty)$ is the Gaussian process with [board]

$$
\mathbb{E} B(t)=0 ; \quad \mathbb{E}[B(s) B(t)]=\min (s, t)
$$

The Brownian bridge process ($\left.B^{\circ}(t), 0 \leq t \leq 1\right)$ is defined to have the $\left(^{*}\right)$ conditional distribution of standard BM over $[0,1]$ given $B(1)=0$. We can construct (mathematically) this process by a trick. Define

$$
(* *) \quad B^{\circ}(t)=B(t)-t B(1), \quad 0 \leq t \leq 1 .
$$

Working with this definition we see [board]

- $\left(B^{\circ}(t)\right)$ is a Gaussian process; $B^{\circ}(0)=B^{\circ}(1)=0$.
- $\mathbb{E} B^{\circ}(t)=0$.
- $\mathbb{E}\left[B^{\circ}(s) B^{\circ}(t)\right]=s(1-t), 0 \leq s \leq t \leq 1$.
- $\mathbb{E}\left[B^{\circ}(t) B(1)\right]=0$.

The final point implies that ($\left.B^{\circ}(t), 0 \leq t \leq 1\right)$ is independent of $B(1)$. So the unconditional distribution of ($\left.B^{\circ}(t), 0 \leq t \leq 1\right)$ is the same as its conditional distribution given $B(1)=0$, and then construction $\left({ }^{* *}\right)$ fits the original description (${ }^{*}$).

Recall previous results: joint density of $(M(t), B(t))$ is
$f_{M(t), B(t)}(a, b)=\frac{2(2 a-b)}{\sqrt{2 \pi}} t^{-3 / 2} \exp \left(-(2 a-b)^{2} /(2 t)\right) ; \quad a \geq 0, a \geq b$.
This had two interesting consequences.

Proposition

$$
\begin{gathered}
\mathbb{P}\left(M_{1}>a \mid B(1)=0\right)=\exp \left(-2 a^{2}\right), a>0 . \\
\mathbb{P}(B(1) \leq-b \mid M(1)=0)=\exp \left(-b^{2} / 2\right), b>0 .
\end{gathered}
$$

The first identity here tell us that for Brownian bridge

$$
M^{o}:=\max _{0 \leq t \leq 1} B^{o}(t)
$$

has distribution

$$
\mathbb{P}\left(M^{\circ}>a\right)=\exp \left(-2 a^{2}\right), a>0
$$

Brownian bridge arises in Statistics as the scaling limit of empirical distributions.
[board and [PK] sec 8.3.3]

Example. What is the distribution of $V=\int_{0}^{1} a(t) B^{\circ}(t) d t$?
We know V has Normal, mean 0, distribution: what is the variance? The "trick" is to write V^{2} as

$$
V^{2}=\left(\int_{0}^{1} a(s) B^{\circ}(s) d s\right) \quad\left(\int_{0}^{1} a(t) B^{\circ}(t) d t\right)
$$

so then

$$
\mathbb{E} V^{2}=\int_{0}^{1} \int_{0}^{1} a(s) a(t) s(1-t) d s d t
$$

Note: this is not "stochastic integration" (stochastic calculus) but is just ordinary calculus.

Somewhat analogous to Brownian bridge, we define Brownian meander ($\left.B^{+}(t), 0 \leq t \leq 1\right)$ be the $\mathrm{BM}(B(t), 0 \leq t \leq 1)$ conditioned on ($B(t) \geq 0,0 \leq t \leq 1$).
This is harder to study explicitly, but the second formula in the Proposition tells us

$$
\mathbb{P}\left(B^{+}(1)>b\right)=\exp \left(-b^{2} / 2\right), b>0
$$

