Lecture 31

David Aldous

13 November 2015

($B(t), 0 \leq t<\infty)$ is standard Brownian motion (BM),
Consider $M(t)=\max _{0 \leq s \leq t} B(s)$. The joint density of $(M(t), B(t))$ is
$f_{M(t), B(t)}(a, b)=\frac{2(2 a-b)}{\sqrt{2 \pi}} t^{-3 / 2} \exp \left(-(2 a-b)^{2} /(2 t)\right) ; \quad a \geq 0, a \geq b$.
This formula is complicated, but there are two interesting consequences.
Proposition

$$
\begin{gathered}
\mathbb{P}\left(M_{1}>a \mid B(1)=0\right)=\exp \left(-2 a^{2}\right), a>0 . \\
\mathbb{P}(B(1) \leq-b \mid M(1)=0)=\exp \left(-b^{2} / 2\right), b>0 .
\end{gathered}
$$

[board]

Other calculations we can do involve

$$
L=\sup \{t \leq 1: B(t)=0\} ; \quad R=\inf \{t \geq 1: B(t)=0\} .
$$

(Jargon: the excursion containing time 1 happens over the interval $[L, R]$.) The results are

$$
\begin{gather*}
f_{R}(t)=\frac{1}{\pi(t-1)^{1 / 2} t}, 1<t<\infty \\
\mathbb{P}(L \leq s)=2 \pi^{-1} \arcsin s^{1 / 2}, 0<s<1 . \tag{1}\\
f_{L}(s)=\frac{1}{\pi s^{1 / 2}(1-s)^{1 / 2}}, 0<s<1 \quad \text { (arcsine distribution). }
\end{gather*}
$$

On the board I will show

$$
\mathbb{P}(L \leq s)=\int_{-\infty}^{\infty} g_{s}(x) \phi_{s}(x) d x
$$

$g_{s}(x)=\mathbb{P}\left(T_{|x|}>1-s\right)=1-2 \bar{\Phi}(|x| / \sqrt{1-s}), \phi_{s}(\cdot)$ is density of $B(s)$.
Then (1) is a hard calculus exercise!

