Lecture 30

David Aldous

9 November 2015

It turns out there is a mathematical object $(B(t), 0 \leq t<\infty)$ called "standard Brownian motion" (BM) with properties

1. $B(t)$ has Normal $(0, \mathrm{t})$ distribution.
2. $B(t)-B(s)$ has Normal $(0, t-\mathrm{s})$ distribution $(s<t)$.
3. For $s_{1}<t_{1} \leq s_{2}<t_{2} \leq \ldots \leq s_{k}<t_{k}$ the increments $B\left(t_{1}\right)-B\left(s_{1}\right), \ldots, B\left(t_{k}\right)-B\left(s_{k}\right)$ are independent.
4. The sample paths $t \rightarrow B(t)$ are (random) continuous functions of t.

Keep in mind this is a model - looking at some time-varying real-world quantity, it may or may not behave like this BM model.

BM is important because
(1) one can do many explicit calculations.
© it is a "building block" for defining other random processes.

We will study the first hitting time to position $b>0$

$$
T_{b}=\inf \{t: B(t)=b\}
$$

and the maximum up to time t

$$
M(t)=\sup \{B(s): 0 \leq s \leq t\} .
$$

Note - an idea we have seen before -

$$
\text { the event }\{M(t) \geq b\} \text { is the event }\left\{T_{b} \leq t\right\} .
$$

So the distribution of either T_{b} or $M(t)$ determines the other:

$$
\mathbb{P}(M(t) \geq b)=\mathbb{P}\left(T_{b} \leq t\right)
$$

We can calculate these distributions - and more - using the reflection principle. I will give a more general formulation than $[\mathrm{PK}]$ sec. 8.2.1.

Theorem (from general reflection principle)

$$
\mathbb{P}\left(T_{b} \leq t, B(t) \geq b+a\right)=\mathbb{P}\left(T_{b} \leq t, B(t) \leq b-a\right) ; \quad a, b>0 .
$$

[picture on board]
We can deduce quite a lot of information from this identity. Set $a=0$; we can then argue [board]

$$
(*) \quad \mathbb{P}(M(t) \geq b)=2 \mathbb{P}(B(t) \geq b)
$$

which can be rewritten as

$$
M(t)={ }_{d}|B(t)| .
$$

So from last class

$$
\mathbb{E} M(t)=\mathbb{E}|B(t)|=\sqrt{2 t / \pi} ; \quad \mathbb{E} M^{2}(t)=\mathbb{E} B^{2}(t)=t
$$

We will find an explicit probability density for T_{b} below. First note an interesting "paradox". From the Markov property

$$
T_{b_{1}+b_{2}}={ }_{d} T_{b_{1}}+T_{b_{2}} \quad \text { (independent). }
$$

But from scaling

$$
T_{b}={ }_{d} b^{2} T_{1}
$$

So for integer $k \geq 2$ we have

$$
\mathbb{E} T_{k}=k \times \mathbb{E} T_{1} ; \quad \mathbb{E} T_{k}=k^{2} \times \mathbb{E} T_{1} .
$$

How can this happen?

Use (*) to see

$$
\mathbb{P}\left(T_{b} \leq t\right)=\mathbb{P}(M(t) \geq b)=2 \mathbb{P}(B(t) \geq b)=2 \bar{\Phi}\left(b / t^{1 / 2}\right)
$$

Differentiate w.r.t. t to get

$$
f_{T_{b}}(t)=b(2 \pi)^{-1 / 2} t^{-3 / 2} \exp \left(-b^{2} /(2 t)\right), 0<t<\infty .
$$

[sketch on board] and note $\mathbb{E} T_{b}=\infty$.
Another calculation will give us the joint density of $(M(t), B(t))$. The reflection principle tells us (changing notation)

$$
\mathbb{P}(B(t) \geq a+c)=\mathbb{P}(M(t) \geq a, B(t) \leq a-c) ; \quad a, c>0
$$

Set $b=a-c$:

$$
\mathbb{P}(M(t) \geq a, B(t) \leq b)=\mathbb{P}(B(t) \geq 2 a-b) ; \quad a>0, a \geq b
$$

Write the right side in terms of $\bar{\Phi}$ and differentiate twice
[calculus on board]
Joint density of $(M(t), B(t))$ is
$f_{M(t), B(t)}(a, b)=\frac{2(2 a-b)}{\sqrt{2 \pi}} t^{-3 / 2} \exp \left(-(2 a-b)^{2} /(2 t)\right) ; \quad a \geq 0, a \geq b$.
This is complicated, but there are two interesting consequences.

Proposition

$$
\begin{gathered}
\mathbb{P}\left(M_{1}>a \mid B(1)=0\right)=\exp \left(-2 a^{2}\right), a>0 . \\
\mathbb{P}(B(1) \leq-b \mid M(1)=0)=\exp \left(-b^{2} / 2\right), b>0 .
\end{gathered}
$$

[board]

