Lecture 28

David Aldous

2 November 2015

・ロト ・回ト ・ヨト ・ヨト

Other examples of martingales.

1. Consider the rate- λ Poisson counting process $(N(t), 0 \le t < \infty)$. Here

 $M_t = N(t) - \lambda t$

is a (continuous-time) martingale. [board]

2. The Polya urn process. Consider a box, initially with $r_0 \ge 1$ red balls and $b_0 \ge 1$ black balls. At each step, pull out a uniform random ball, and the return it into the box along with another new ball of the same color. Consider

 M_t = proportion of balls that are red at time t.

Then (M_t) is a martingale. [board]

3. Fisher-Wright genetic model. (2-type, no mutation or selection) (from Lecture 5)

- 2N genes in each generation, of types **a** or **A**.
- "children choose parents": each gene is a copy (same type) of a uniform random gene from previous generation.

Then

 X_t = number of type-**a** in generation t

is a Markov chain, with states $\{0, 1, 2, \dots, 2N\}$ and transition probabilities

$$p_{ij} = \mathbb{P}(\operatorname{Bin}(2N, \frac{i}{2N}) = j) = \binom{2N}{j} (\frac{i}{2N})^j \frac{2N-i}{2N} 2^{N-j}.$$

 (X_t) is a martingale.

Here is a counter-intuitive problem.

- regular deck of cards 26 red and 26 black.
- I deal, face-up.
- At some time you have to bet that the next card will be red.
- If you bet on the first card then $\mathbb{P}(\text{next card is red}) = 1/2$.
- Is there a better strategy (for instance by counting the number of red/black cards dealt)?

Theorem

Whatever strategy you use, $\mathbb{P}(\text{next card is red}) = 1/2$.

(*) *) *) *)

Theorem

Whatever strategy you use, $\mathbb{P}(\text{next card is red}) = 1/2$.

- A_t event "t'th card is red.
- \mathcal{F}_t = information from first *t* cards.
- given \mathcal{F}_t the remaining cards are in random order, so $\mathbb{P}(A_{t+1}|\mathcal{F}_t) = \mathbb{P}(A_{52}|\mathcal{F}_t).$

key idea: betting on next card is like betting on bottom card.

•
$$M_t = \mathbb{P}(A_{52}|\mathcal{F}_t)$$
 is a martingale.

- the time au when we make the bet (on card au + 1) is a stopping time.
- $\mathbb{P}(\text{win bet}|\mathcal{F}_t, \tau = t) = \mathbb{P}(\mathcal{A}_{t+1}|\mathcal{F}_t, \tau = t) = \mathbb{P}(\mathcal{A}_{52}|\mathcal{F}_t, \tau = t).$
- $\mathbb{P}(\text{win bet}|\mathcal{F}_{\tau}) = M_{\tau}$
- $\mathbb{P}(\mathsf{win bet}) = \mathbb{EP}(\mathsf{win bet} | \mathcal{F}_{\tau}) = \mathbb{E}M_{\tau}$
- but optional sampling theorem says $\mathbb{E}M_{\tau} = \mathbb{E}M_0 = \mathbb{E}M_{52} = \mathbb{P}(A_{52}) = 1/2.$

In more advanced probability, we use the optional sampling theorem to prove a variety of **general inequalities** and **general convergence theorems**. I will give one example of each.

The basic property of a martingale was

$$\mathbb{E}(X_{t+1}|\mathcal{F}_t)=X_t.$$

Replacing the equality by an inequality gives two new definitions:

 $\mathbb{E}(X_{t+1}|\mathcal{F}_t) \leq X_t.$ (supermartingale) $\mathbb{E}(X_{t+1}|\mathcal{F}_t) \geq X_t.$ (submartingale)

Theorem

If (X_t) is a supermartingale and $X_t \ge 0$ then

$$\mathbb{P}(\max_{t\leq t_0}X_t\geq b)\leq \frac{\mathbb{E}X_0}{b}, \ b>0.$$

Letting $t_0 \rightarrow \infty$ we can conclude

$$\mathbb{P}(\sup_{t} X_t \geq b) \leq \frac{\mathbb{E}X_0}{b}, \ b > 0.$$

▲ロ → ▲ 団 → ▲ 臣 → ▲ 臣 → の < ⊙

Theorem

If (X_t) is a supermartingale and $X_t \ge 0$ then

$$\mathbb{P}(\max_{t\leq t_0} X_t\geq b)\leq \frac{\mathbb{E}X_0}{b}, \ b>0.$$

The event $\{\max_{t \leq t_0} X_t \geq b\}$ is the event $\{\tau \leq t_0\}$ for the stopping time

$$\tau = \min\{t : X_t \ge b\}.$$

The optional sampling theorem for supermartingales says

$$\mathbb{E}X_{\tau^*} \leq \mathbb{E}X_0$$

for stopping times τ^* . Apply to $\tau^* = \min(\tau, t_0 + 1)$. [continue on board]

Convergence theorems

Simple symmetric random walk $S_n = \sum_{i=1}^n \xi_i$ for IID $\mathbb{P}(\xi = \pm 1) = 1/2$ is a martingale, but clearly there is no finite limit $S_n \to S_\infty$. There are several theorems that say, roughly, that for a "martingale-like" process (X_n) ,

if
$$\sup_n \mathbb{E}|X_n| < \infty$$
 then $X_n \to \text{some } X_\infty$ a.s..

Theorem

If (X_n) is a supermartingale and $X_n \ge 0$ then $X_n \to \text{ some } X_\infty$ a.s.

Theorem

If (X_n) is a submartingale and $\sup_n \mathbb{E} \max(X_n) < \infty$ then $X_n \to \text{some } X_\infty$ a.s.

[Note the second theorem implies the first].

イロト 不得 トイヨト イヨト 二日