Lecture 26

David Aldous

28 October 2015

For a real-valued RV X and a σ-field \mathcal{F}, we can define the conditional expectation $\mathbb{E}(X \mid \mathcal{F})$.

- The gambling interpretation of $\mathbb{E}(X \mid \mathcal{F})$ is as the fair stake Z to pay today in order to receive X tomorrow, when \mathcal{F} is the known information,
- The abstract math definition of $\mathbb{E}(X \mid \mathcal{F})$ is as the \mathcal{F}-measurable RV Z such that

$$
\mathbb{E}\left[Z 1_{A}\right]=\mathbb{E}\left[X 1_{A}\right] \text { for all } A \text { in } \mathcal{F} .
$$

- In the case $\mathcal{F}=\sigma(Y)$ we have $\mathbb{E}(X \mid \mathcal{F})=\mathbb{E}(X \mid Y)$ as defined before.

Analogous to rules in algebra/calculus, there are many rules for manipulating conditional expectations; will develop as we go.

Rules for manipulating conditional expectation

All RVs assumed integrable.

1. $\mathbb{E}(X \pm Y \mid \mathcal{F})=\mathbb{E}(X \mid \mathcal{F}) \pm \mathbb{E}(Y \mid \mathcal{F})$
2. If X is \mathcal{F}-measurable then $\mathbb{E}(X \mid \mathcal{F})=X$.
3. If X is independent of \mathcal{F} then $\mathbb{E}(X \mid \mathcal{F})=\mathbb{E} X$.
4. If W is \mathcal{F}-measurable then $\mathbb{E}(W X \mid \mathcal{F})=W \mathbb{E}(X \mid \mathcal{F})$.
5. If $\mathcal{F} \subseteq \mathcal{G}$ then $\mathbb{E}[\mathbb{E}(X \mid \mathcal{G}) \mid \mathcal{F}]=\mathbb{E}(X \mid \mathcal{F})$. In particular $\mathbb{E}[\mathbb{E}(X \mid \mathcal{G})]=\mathbb{E} X$.

Most material in this lecture is in [BZ] chapter 3, different notation.
A martingale is a process $\left(X_{0}, X_{1}, X_{2}, \ldots\right)$ such that

- $\mathbb{E}\left(X_{t+1} \mid \mathcal{F}_{t}\right)=X_{t}$ for each $t \geq 0$.

If no filtration is specified then we take the natural filtration $\mathcal{F}_{t}=\sigma\left(X_{0}, \ldots, X_{t}\right)$. A martingale represents your successive fortune in a fair game. In particular

$$
\mathbb{E} X_{t}=\mathbb{E} X_{0}, t=1,2,3, \ldots
$$

In more advanced Probability, one studies limit theorems and inequalities for martingales, which can be used to prove results about other stochastic processes. In this course, our theory will involve gambling strategies and stopping times and the optional sampling theorem. We then see how to use the theory to do calculations.

Take a process $\left(M_{t}\right)$, and view it as results of 1 unit bets at each time, or the value of 1 unit of stock at the end of successive days. A gambling strategy is a decision, each time, of how many units to bet, or how many units of stock to hold.

Thinking of the "stock" case, suppose you can buy/sell only at end of trading on day t. So the number α_{t} of shares you hold during day t is chosen by you at end of day $t-1$ based on information known then. So

$$
X_{t}=\text { your fortune at end of day } t
$$

is given by

$$
X_{t}-X_{t-1}=\alpha_{t}\left(M_{t}-M_{t-1}\right)
$$

Theorem

If $\left(M_{t}\right)$ is a martingale and α_{t} is \mathcal{F}_{t-1}-measurable for each t then $\left(X_{t}\right)$ is a martingale.
[outline on board]. The conceptual point is that, with a "fair game", there is no "system" (varying the amounts you bet each time) which makes the game favorable to you.

A stopping time τ is a RV taking values in $\{0,1,2, \ldots ; \infty\}$ such that

$$
\{\tau=t\} \in \mathcal{F}_{t} \text { for each } 0 \leq t<\infty .
$$

In words: your decision when to stop depends on past and present information only - you cannot see the future.

Most stopping times we use are defined as "the first time" something happens. Note that "the last time" is usually not a stopping time.
Given a process $\left(X_{t}, 0 \leq t<\infty\right)$ and a stopping time τ, the "stopped process" is defined as

$$
X_{t}^{*}=X_{\min (t, \tau)}, \quad t=0,1,2, \ldots
$$

[board: notationally more convenient to stop the process changing than to stop time.] Mathematically, this is just a simple gambling strategy, so

If $\left(X_{t}\right)$ is a martingale then the stopped process $\left(X_{t}^{*}\right)$ is a martingale.

$$
X_{t}^{*}=X_{\min (t, \tau)}, \quad t=0,1,2, \ldots .
$$

If $\left(X_{t}\right)$ is a martingale then the stopped process $\left(X_{t}^{*}\right)$ is a martingale.

Now suppose the stopping time τ is such that, for some constant t_{0},

$$
\mathbb{P}\left(\tau \leq t_{0}\right)=1
$$

Then

$$
X_{\tau}=X_{\tau}^{*}=X_{t_{0}}^{*} ; \quad X_{0}=X_{0}^{*}
$$

and because X^{*} is a martingale we have $\mathbb{E} X_{t_{0}}^{*}=\mathbb{E} X_{0}^{*}$, that is

$$
\mathbb{E} X_{\tau}=\mathbb{E} X_{0} .
$$

This is a special case of a general theorem.

Theorem (Optional Sampling Theorem)

If $\left(X_{t}\right)$ is a martingale and τ is a stopping time, then (under extra technical conditions)

$$
\mathbb{E} X_{\tau}=\mathbb{E} X_{0} .
$$

Advanced Probability courses give different versions of the "extra technical conditions" - see [BZ] Theorem 3.1 for one version of these conditions. In the examples I will give, it is not hard to show the conditions hold.

The "double when you lose" strategy shows that some extra condition is necessary. [board]

Conceptual point: The Optional Sampling Theorem and the previous "gambling systems" theorem constitute an informal "conservation of fairness" principle: the overall results of any "system" based on fair games is like a single fair bet. Even in models not explicitly involving gambling, one can do calculations by inventing hypothetical gambling strategies and using this principle.

Example: patterns in coin-tossing or dice-throwing.

Throw a die until we see a specified sequence, say 525 of outcomes. This requires τ throws. Calculate $\mathbb{E} \tau$.
[board - outline below]
Consider "strategy 17":

- bet 1 that throw 17 will be " 5 ";
- if win (now have 6 units) bet 6 units that throw 18 will be " 2 ";
- if win (now have 36 units) be 36 units that throw 19 will be " 5 "
- if win then the game stops.

Now consider analogous "strategy n " for each $1 \leq n \leq \tau$. The overall gain from all these strategies works out as $216+6-\tau$. But by the "conservation of fairness" principle the expected gain must be zero. So $\mathbb{E} \tau=216+6=222$.

