Lecture 25

David Aldous

26 October 2015

・ロン ・四 と ・ ヨ と ・ ヨ と …

- The collection of all events determined by a family (W, X, Y, Z) is called σ(W, X, Y, Z)
- A RV T whose value is determined by the values of (W, X, Y, Z) is called σ(W, X, Y, Z)-measurable.
- A σ -field $\mathcal F$ of events is regarded as "information".
- $\mathcal{F} \subseteq \mathcal{G}$ means: if $A \in \mathcal{F}$ then $A \in \mathcal{G}$. So \mathcal{G} contains more information than \mathcal{F} .
- A sequence $\mathcal{F}_0 \subseteq \mathcal{F}_1 \subseteq \mathcal{F}_2 \subseteq \ldots$ is called a **filtration**. \mathcal{F}_t is the σ -field of known events at time t, and saying a RV Y is \mathcal{F}_t -measurable means we know the value of Y at time t.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 うのの

[BZ] exercise 3.1 - [board]

A sequence of coin tosses. \mathcal{F}_t tells us the results of the first *t* tosses. Which is the smallest *t* such that \mathcal{F}_t contains the following event.

 $C = \{ \text{ the first 100 tosses produce the same outcome } \}.$ $A = \{ \text{ the first occurrence of heads is preceded by at most 10 tails } \}.$ $B = \{ \text{ there is at least one head in the infinite sequence } \}$ $D = \{ \text{ no more than 2 heads and 2 tails in the first 5 tosses } \}.$

Note this is just "logic" - no probability.

・ 同 ト ・ ヨ ト ・ ヨ ト

-

For a real-valued RV X and a σ -field \mathcal{F} , we can define the conditional expectation $\mathbb{E}(X|\mathcal{F})$.

- The **gambling interpretation** of $\mathbb{E}(X|\mathcal{F})$ is as the fair stake Z to pay today in order to receive X tomorrow, when \mathcal{F} is the known information,
- The abstract math definition of $\mathbb{E}(X|\mathcal{F})$ is as the \mathcal{F} -measurable RV Z such that

$$\mathbb{E}[Z1_A] = \mathbb{E}[X1_A]$$
 for all A in \mathcal{F} .

• In the case $\mathcal{F} = \sigma(Y)$ we have $\mathbb{E}(X|\mathcal{F}) = \mathbb{E}(X|Y)$ as defined before.

Analogous to rules in algebra/calculus, there are many rules for manipulating conditional expectations; will develop as we go.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 うのの

Most material in this lecture is in [BZ] chapter 3, different notation.

A martingale is a process (X_0, X_1, X_2, \ldots) such that

•
$$\mathbb{E}(X_{t+1}|\mathcal{F}_t) = X_t$$
 for each $t \ge 0$.

If no filtration is specified then we take the natural filtration $\mathcal{F}_t = \sigma(X_0, \ldots, X_t).$

Examples of martingales - check on board

(A). If X_1, X_2, \ldots are independent, $\mathbb{E}X_i = 0$ and $S_n = \sum_{i=1}^n X_i$ then

 $(0 = S_0, S_1, S_2, \ldots)$ is a martingale.

Also, writing var $(X_i) = \sigma_i^2$ and $V_n = S_n^2 - \sum_{i=1}^n \sigma_i^2$.

 $(0 = V_0, V_1, V_2, \ldots)$ is a martingale.

(B). If Y_1, Y_2, \ldots are independent, $\mathbb{E}Y_i = 1$ and $M_n = \prod_{i=1}^n Y_i$ then

$$(1 = M_0, M_1, M_2, \ldots)$$
 is a martingale.

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

(C). In the Galton-Watson branching process with offspring distribution ξ , let Z_n be the population in generation *n*. Write $\mu = \mathbb{E}\xi$. Then

$$(Z_n/\mu^n, \ 0 \le n < \infty)$$
 is a martingale.

(D). Given a filtration (\mathcal{F}_t) , for **any** RV X with $\mathbb{E}|X| < \infty$ we can consider $M_t = \mathbb{E}(X|\mathcal{F}_t)$ and then

 $(M_t, 0 \le t < \infty)$ is a martingale.

Recalling $\mathbb{P}(A) = \mathbb{E}\mathbf{1}_A$, we can define conditional probability given a σ -field by $\mathbb{P}(A|\mathcal{F}) = \mathbb{E}(\mathbf{1}_A|\mathcal{F})$, and then for **any** event A

 $(\mathbb{P}(A|\mathcal{F}_t), \ 0 \le t < \infty)$ is a martingale.

Later we'll see how this works with real-world future events, Also relevant to mathematical study of models. Recall (Lecture 6) "first step analysis" of a Markov chain (X_t) with $\mathbf{P} = (p_{ij})$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 うのの

Consider disjoint subsets A, B of States – maybe $A = \{a\}$ and $B = \{b\}$. Let's study

$$g(i) = \mathbb{P}_i(T_A < T_B)$$

the probability starting at i of hitting A before hitting B. We have

$$g(i) = 1, i \in A; g(i) = 0, i \in B$$
 (1)

and by conditioning on the first step

$$g(i) = \sum_{j} p_{ij}g(j), \ i \notin A \cup B.$$
(2)

In Lecture 6 we discussed solving these equations. Here we observe (explain $T_{A\cup B}$ later)

(E).

 $(g(X_t), \ 0 \le t \le T_{A \cup B})$ is a martingale.

Conceptual point: "solving these equations" is the same as "find a function g: States $\rightarrow \mathbb{R}$ such that $g(X_t)$ is a martingale".

Rules for manipulating conditional expectation

All RVs assumed integrable.

- **1.** $\mathbb{E}(X \pm Y | \mathcal{F}) = \mathbb{E}(X | \mathcal{F}) \pm \mathbb{E}(Y | \mathcal{F})$
- **2.** If X is \mathcal{F} -measurable then $\mathbb{E}(X|\mathcal{F}) = X$.
- **3.** If X is independent of \mathcal{F} then $\mathbb{E}(X|\mathcal{F}) = \mathbb{E}X$.
- **4.** If *W* is \mathcal{F} -measurable then $\mathbb{E}(WX|\mathcal{F}) = W\mathbb{E}(X|\mathcal{F})$.

5. If $\mathcal{F} \subseteq \mathcal{G}$ then $\mathbb{E}[\mathbb{E}(X|\mathcal{G}) | \mathcal{F}] = \mathbb{E}(X|\mathcal{F})$. In particular $\mathbb{E}[\mathbb{E}(X|\mathcal{G})] = \mathbb{E}X$.