Lecture 24

David Aldous

23 October 2015

・ロン ・回と ・ヨン ・ ヨン

This lecture: outline some "abstract" ideas – details in [BZ] Chapters 1, 2 – as background to the Martingale section.

Suppose we are given a family of RVs $\{W, X, Y, Z\}$. An event such as

$$A = \{W + X^2 < Z - 7\}$$

is "determined" by the family – if we know the values of the family then we know whether A happens.

Definition: The collection of all events determined by the family is called (in symbols) $\sigma(W, X, Y, Z)$

(in words) "the σ -field generated by the family $\{W, X, Y, Z\}$ ".

Now suppose we are given a family $\{W, X, Y, Z\}$ and another RV T. The two assertions below are equivalent:

- T = g(W, X, Y, Z) for some function g
- The value of T is determined by the values of (W, X, Y, Z)We say "T is $\sigma(W, X, Y, Z)$ -measurable".

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 うのの

Different areas within the Mathematical Sciences use the word "information" with different meanings. We will use the meaning

Information is a σ -field of events.

Intuitively, at some past time there were a lot of events A which were uncertain, that is $0 < \mathbb{P}(A) < 1$. But now (time t) some of these events are "known" – we know A happened or did not happen. The collection of all known events is the σ -field which represents the "information" we have at time t.

We use symbols like ${\mathcal F}$ or ${\mathcal G}$ to denote $\sigma\text{-fields}.$ Note

$$\mathcal{F} \subseteq \mathcal{G}$$
 means: if $A \in \mathcal{F}$ then $A \in \mathcal{G}$

That is \mathcal{F} is a smaller collection than \mathcal{G} .

For theory, we often write \mathcal{F}_t for the σ -field of known events at time t, without specifying it explicitly. This theory assumes we never forget, so

$$\mathcal{F}_0 \subseteq \mathcal{F}_1 \subseteq \mathcal{F}_2 \subseteq \ldots$$

and such a sequence is called a **filtration**. In this context, saying a RV Y is \mathcal{F}_t -measurable means we know the value of Y at time t.

For theory, we often write \mathcal{F}_t for the σ -field of known events at time t, without specifying it explicitly. This theory assumes we never forget, so

 $\mathcal{F}_0 \subseteq \mathcal{F}_1 \subseteq \mathcal{F}_2 \subseteq \ldots$

and such a sequence is called a **filtration**. In this context, saying a RV Y is \mathcal{F}_t -measurable means we know the value of Y at time t.

In specific examples we usually start with random variables and use them to define the filtration. In particular given RVs X_0, X_1, X_2, \ldots we can define

 $\mathcal{F}_t = \sigma(X_0, \dots X_t)$ the **natural** filtration.

Note that for real-valued X_i with $X_0 = 0$ and sums $S_n = \sum_{i=1}^n X_i$ we have

$$\mathcal{F}_t = \sigma(X_0, \ldots X_t) = \sigma(S_0, \ldots S_t).$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 うのの

Conditional expectation as a random variable. [from Lecture 4]

Given r.v.'s (W, Y) consider $\mathbb{E}(W|Y = y)$. This is a number depending on y – in other words it's a **function** of y. Giving this function a name hwe have

(*) $\mathbb{E}(W|Y = y) = h(y)$ for all possible values y of Y.

We now make a notational convention, to rewrite the assertion (*) as

$$(**) \quad \mathbb{E}(W|Y) = h(Y).$$

The right side is a r.v., so we must regard $\mathbb{E}(W|Y)$ as a r.v.

Let's relate this to today's lecture using an elementary example. Take Xand Y independent die throws

$$\mathbb{E}(X+Y|X)=X+\tfrac{7}{2}.$$

Consider $X^* = 10X$: then

$$\mathbb{E}(X+Y|X^*)=X+\tfrac{7}{2}.$$

because knowing the value of 10X is the same "information" as knowing the value of X. ◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ のへで Given r.v.'s (W, Y) consider $\mathbb{E}(W|Y = y)$. This is a number depending on y – in other words it's a **function** of y. Giving this function a name hwe have

(*) $\mathbb{E}(W|Y = y) = h(y)$ for all possible values y of Y.

We now make a notational convention, to rewrite the assertion (*) as

 $(**) \quad \mathbb{E}(W|Y) = h(Y).$

The right side is a r.v., so we must regard $\mathbb{E}(W|Y)$ as a r.v.

The central abstract idea of this lecture

It makes sense to talk about $\mathbb{E}(W|\mathcal{F})$ for a σ -field \mathcal{F} .

In the case $\mathcal{F} = \sigma(Y)$ we have $\mathbb{E}(W|\mathcal{F}) = \mathbb{E}(W|Y)$, as defined above. In general $\mathbb{E}(W|\mathcal{F})$ is a \mathcal{F} -measurable RV.

Recall the gambling interpretation of expectation

- A fair bet (really, the fair odds for a bet) is one where your gain G has EG = 0.
- To receive a random amount of money X tomorrow, a fair "stake" to pay today is $\mathbb{E}X$

Now suppose we have some relevant "information" \mathcal{F} . The fair stake (to receive X) may depend on the information; this makes the fair stake a RV Z which must be \mathcal{F} -measurable. Consider the gambling strategy: choose an event A in \mathcal{F}

place the bet if A happens; don't bet if A does not happen.

Our gain is $G = (X - Z)1_A$, and for the stake to be fair we must have $\mathbb{E}G = 0$. This argument leads to two related ideas.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 うのの

- The gambling interpretation of $\mathbb{E}(X|\mathcal{F})$ is as the fair stake Z to pay today in order to receive X tomorrow, when \mathcal{F} is the known information.
- The abstract math definition of $\mathbb{E}(X|\mathcal{F})$ is as the \mathcal{F} -measurable RV Z such that

$$\mathbb{E}[Z1_A] = \mathbb{E}[X1_A]$$
 for all A in \mathcal{F} .

We will study martingales. A martingale is a real-valued stochastic process $(X_0, X_1, X_2, ...)$ with a certain property. Thinking of X_t as your "fortune" (amount of money) at time t, the property is

• X_t is your time-*t* fortune in some sequence of fair bets.

The general math definition is as follows.

There is a filtration

 $\mathcal{F}_0 \subset \mathcal{F}_1 \subset \mathcal{F}_2 \subset \ldots$

 $(\mathcal{F}_t \text{ is the } \sigma \text{-field of known events at time } t)$

- The process (X_0, X_1, X_2, \ldots) is **adapted** to the filtration, meaning X_t is \mathcal{F}_t -measurable – we know the value of X_t at time t.
- $\mathbb{E}(X_{t+1}|\mathcal{F}_t) = X_t$ for each t > 0.

When this holds, (X_t) is a **martingale**. If the filtration is not specified then we take the natural filtration $\mathcal{F}_t = \sigma(X_0, \ldots, X_t)$.

Why study martingales? 3 reasons

- Financial activities involving risk (stocks, insurance) are mathematically rather like gambling.
- One can often find aspects of other stochastic processes that are like martingales, so the theory (like calculus or algebra) is mathematically useful quite widely within Probability Theory.
- For any real-world future event A, the probabilities X_t that the event happens, given what is known at time t, must be a martingale. < = > = √QQ