Lecture 22

David Aldous

19 October 2015

・ロン ・回 と ・ ヨ と ・ ヨ と …

= 900

In continuous time $0 \le t < \infty$ we specify transition rates

$$q_{ij} = \lim_{\delta \downarrow 0} \frac{\mathbb{P}(X(t+\delta)=j|X(t)=i, \text{ past })}{\delta}$$

or informally

$$\mathbb{P}(X(t+dt)=j|X(t)=i)=q_{ij}dt$$

but note these are defined only for $j \neq i$. The time-*t* distribution $\pi(t)$ evolves as

$$rac{d}{dt}\pi(t)=\pi(t)\mathbf{Q}$$

where **Q** is the matrix with off-diagonal entries (q_{ij}) and with diagonal entries defined by

$$q_{ii}=-q_i=-\sum_{j
eq i}q_{ij}.$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ = 目 - のへで

Birth-and-death chains.

These have states $\{0, 1, 2, ..., N\}$ or $\{0, 1, 2,\}$ and the only transitions are $i \rightarrow i \pm 1$. Write

$$\lambda_i = q_{i,i+1}$$
 (birth rate); $\mu_i = q_{i,i-1}$ (death rate).

For these chains we can solve the detailed balance equations: [board]

$$w_i = \prod_{j=1}^i \frac{\lambda_{j-1}}{\mu_j}; \quad w_0 = 1, \ w = \sum_{i \ge 0} w_i.$$

So the stationary distribution is

$$\pi_i = w_i/w$$

provided (in the infinite-state case) $w < \infty$.

Example. Take $\lambda_i = \lambda$, $\mu_i = \mu i$. Then [board] π is the Poisson (λ/μ) distribution.

Example. Take $\lambda_i = \lambda$, $\mu_i = \mu$, $\lambda < \mu$. Then [board] π is the shifted Geometric ($p = 1 - \lambda/\mu$) distribution.

This is the M/M/1 queue model, as follows.

- Customers arrive at times of a rate- λ Poisson point process
- Service times are IID Exponential(μ).
- X(t) = number of customers at time t,

We can calculate many quantities associated with the stationary process [board]

- Long-run proportion of time server is idle = $1 \lambda/\mu$.
- Mean number of customers $= \frac{\lambda}{\mu \lambda}$.
- Mean waiting time (until starting service) for customer = $\frac{\lambda/\mu}{\mu-\lambda}$.
- Mean total time (until ending service) for customer $=\frac{1}{\mu-\lambda}$.
- Mean busy period for server $=\frac{1}{\mu-\lambda}$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 うのの

More theory – similar to discrete-time setting.

[Assume chain is irreducible, and either finite-state or infinite state and positive-recurrent, so a unique stationary distribution π exists.]

- For any initial distribution, $\mathbb{P}(X(t) = i) \rightarrow \pi_i$ as $t \rightarrow \infty$.
- Writing $N_i(t) = \text{length of time chain spends in state } i \text{ during } [0, t]$, we have $N_i(t)/t \to \pi_i$ as $t \to \infty$.
- $\mathbb{E}_i T_i^+ = 1/(\pi_i q_i)$, where T_i^+ is the first **return time** to *i* (after leaving *i*).

Note we don't need "aperiodic" in the first result. The third result can be seen by a general "cycle argument" [next slide and board].

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 うのの

Example: repairman model ([PK] Problem 6.4.3.)

- 5 machines each is working or "failing" (not working)
- A working machine fails at rate $\alpha = 0.2$
- 1 repairman; a repair takes random Exponential(rate $\beta = 0.5$) time
- Study X(t) =number of machines working at time t.

[board]

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 うのの

Note that if the stationary distribution π exists for an infinite-state birth-and-death process, then for the same process on states $\{0, 1, 2, \ldots, N\}$ the stationary distribution is

$$\pi^{[N]}_i=\pi_i/s.$$
 $s=\sum_{j=0}^N\pi_j.$

In other words, taking π as the distribution of a RV Z, $\pi^{[N]}$ is the conditional distribution of Z given $\{Z \leq N\}$.

イロト 不得 とくほと くほとう ほう