Lecture 22

David Aldous

19 October 2015

In continuous time $0 \leq t<\infty$ we specify transition rates

$$
q_{i j}=\lim _{\delta \downarrow 0} \frac{\mathbb{P}(X(t+\delta)=j \mid X(t)=i, \text { past })}{\delta}
$$

or informally

$$
\mathbb{P}(X(t+d t)=j \mid X(t)=i)=q_{i j} d t
$$

but note these are defined only for $j \neq i$. The time- t distribution $\pi(t)$ evolves as

$$
\frac{d}{d t} \pi(t)=\pi(t) \mathbf{Q}
$$

where \mathbf{Q} is the matrix with off-diagonal entries $\left(q_{i j}\right)$ and with diagonal entries defined by

$$
q_{i i}=-q_{i}=-\sum_{j \neq i} q_{i j}
$$

Birth-and-death chains.

These have states $\{0,1,2, \ldots, N\}$ or $\{0,1,2, \ldots \ldots\}$ and the only transitions are $i \rightarrow i \pm 1$. Write

$$
\lambda_{i}=q_{i, i+1} \quad(\text { birth rate }) ; \quad \mu_{i}=q_{i, i-1} \quad \text { (death rate) } .
$$

For these chains we can solve the detailed balance equations: [board]

$$
w_{i}=\prod_{j=1}^{i} \frac{\lambda_{j-1}}{\mu_{j}} ; \quad w_{0}=1, w=\sum_{i \geq 0} w_{i}
$$

So the stationary distribution is

$$
\pi_{i}=w_{i} / w
$$

provided (in the infinite-state case) $w<\infty$.
Example. Take $\lambda_{i}=\lambda, \mu_{i}=\mu i$. Then [board] π is the $\operatorname{Poisson}(\lambda / \mu)$ distribution.

Example. Take $\lambda_{i}=\lambda, \mu_{i}=\mu, \lambda<\mu$. Then [board] π is the shifted Geometric ($p=1-\lambda / \mu$) distribution.

This is the $M / M / 1$ queue model, as follows.

- Customers arrive at times of a rate- λ Poisson point process
- Service times are IID Exponential (μ).
- $X(t)=$ number of customers at time t,

We can calculate many quantities associated with the stationary process [board]

- Long-run proportion of time server is idle $=1-\lambda / \mu$.
- Mean number of customers $=\frac{\lambda}{\mu-\lambda}$.
- Mean waiting time (until starting service) for customer $=\frac{\lambda / \mu}{\mu-\lambda}$.
- Mean total time (until ending service) for customer $=\frac{1}{\mu-\lambda}$.
- Mean busy period for server $=\frac{1}{\mu-\lambda}$.

More theory - similar to discrete-time setting.
[Assume chain is irreducible, and either finite-state or infinite state and positive-recurrent, so a unique stationary distribution π exists.]

- For any initial distribution, $\mathbb{P}(X(t)=i) \rightarrow \pi_{i}$ as $t \rightarrow \infty$.
- Writing $N_{i}(t)=$ length of time chain spends in state i during $[0, t]$, we have $N_{i}(t) / t \rightarrow \pi_{i}$ as $t \rightarrow \infty$.
- $\mathbb{E}_{i} T_{i}^{+}=1 /\left(\pi_{i} q_{i}\right)$, where T_{i}^{+}is the first return time to i (after leaving i).
Note we don't need "aperiodic" in the first result. The third result can be seen by a general "cycle argument" [next slide and board].

Example: repairman model ([PK] Problem 6.4.3.)

- 5 machines - each is working or "failing" (not working)
- A working machine fails at rate $\alpha=0.2$
- 1 repairman; a repair takes random Exponential(rate $\beta=0.5$) time
- Study $X(t)=$ number of machines working at time t.
[board]

Note that if the stationary distribution π exists for an infinite-state birth-and-death process, then for the same process on states $\{0,1,2, \ldots, N\}$ the stationary distribution is

$$
\pi_{i}^{[N]}=\pi_{i} / s . \quad s=\sum_{j=0}^{N} \pi_{j}
$$

In other words, taking π as the distribution of a RV Z, $\pi^{[N]}$ is the conditional distribution of Z given $\{Z \leq N\}$.

