Lecture 21

David Aldous

16 October 2015

In continuous time $0 \leq t<\infty$ we specify transition rates

$$
q_{i j}=\lim _{\delta \downarrow 0} \frac{\mathbb{P}(X(t+\delta)=j \mid X(t)=i, \text { past })}{\delta}
$$

or informally

$$
\mathbb{P}(X(t+d t)=j \mid X(t)=i)=q_{i j} d t
$$

but note these are defined only for $j \neq i$. The time- t distribution $\pi(t)$ evolves as

$$
\frac{d}{d t} \pi(t)=\pi(t) \mathbf{Q}
$$

where \mathbf{Q} is the matrix with off-diagonal entries $\left(q_{i j}\right)$ and with diagonal entries defined by

$$
q_{i i}=-q_{i}=-\sum_{j \neq i} q_{i j}
$$

There is an alternative "jump and hold" description of a continuous-time Markov chain.

- After jumping into a state i, the process remains in state i for a random time with Exponential $\left(q_{i}\right)$ distribution.
- Then it jumps to some other state, to state $j \neq i$ with probability $\widehat{p}_{i j}=q_{i j} / q_{i}$.
So the matrix

$$
\widehat{\mathbf{P}}=\left(\widehat{p}_{i j}\right), \quad \text { where } \widehat{p}_{i i}=0
$$

is the transition matrix for the discrete-time jump chain $\hat{X}(0), \hat{X}(1), \ldots$ that shows the successive states visited.

Example: Yule process

- parameter $\beta>0$
- states $1,2,3, \ldots$
- transition rates $q_{i, i+1}=\beta i$
- $X(0)=1$.

The differential equations are

$$
\frac{d}{d t} \pi_{j}(t)=\beta\left[(j-1) \pi_{j-1}(t)-j \pi_{j}(t)\right] .
$$

One can solve these equations - see [PK] section 6.1.3

$$
\pi_{j}(t)=\mathbb{P}(X(t)=j)=e^{-\beta t}\left(1-e^{-\beta t}\right)^{j-1}, j=1,2, \ldots
$$

In other words $X(t)$ has Geometric $e^{-\beta t}$ distribution, so $\mathbb{E} X(t)=e^{\beta t}$.

The Yule process is a basic example of a continuous-time branching process [picture on board]

The Yule process is also an example of a "pure birth" process, meaning the only transitions are $i \rightarrow i+1$. For such processes the distribution of $X(t)$ can be related to the sum of independent Exponentials RVs - see [PK] section 6.1.2.

Example: Linear pure death process $[P K]$ section 6.2.1.

- parameter $\mu>0$
- states $0,1,2,3, \ldots, N$
- transition rates $q_{i, i-1}=\mu i$
- $X(0)=N$.

The differential equations are

$$
\frac{d}{d t} \pi_{j}(t)=\mu\left[(j+1) \pi_{j+1}(t)-j \pi_{j}(t)\right] .
$$

But one can find the time- t distribution easily via an alternative description of the process.

- N individuals; initially alive, each dies at rate μ.
- $X(t)=$ number alive at time t,

Clearly $X(t)$ has Binomial $\left(N, e^{-\mu t}\right)$ distribution.

$$
\pi_{j}(t)=\binom{N}{j} e^{-\mu t j}\left(1-e^{-\mu t}\right)^{N-j}
$$

Note the general pure death process (only transitions are $i \rightarrow i-1$) is mathematically the same as the general pure birth process.

Some theory - similar to discrete-time setting.

If the chain is irreducible, and either finite-state or infinite state and positive-recurrent, then a unique stationary distribution π exists, and is the solution of $\pi \mathbf{Q}=0$, that is

$$
\sum_{i \neq j} \pi_{i} q_{i j}=\pi_{j} q_{j} \quad \text { for each } j
$$

If you can find weights $w_{i}>0$ such that

$$
w_{i} q_{i j}=w_{j} q_{j i} \quad \text { for each } i, j \quad \text { (detailed balance) }
$$

then the stationary distribution is

$$
\pi_{i}=w_{i} / w, \quad w=\sum_{j} w_{j}
$$

provided (in the infinite-state case) $w<\infty$.

Birth-and-death chains.

These have states $\{0,1,2, \ldots, N\}$ or $\{0,1,2, \ldots \ldots\}$ and the only transitions are $i \rightarrow i \pm 1$. Write

$$
\lambda_{i}=q_{i, i+1} \quad(\text { birth rate }) ; \quad \mu_{i}=q_{i, i-1} \quad \text { (death rate) } .
$$

For these chains we can solve the detailed balance equations: [board]

$$
w_{i}=\prod_{j=1}^{i} \frac{\lambda_{j-1}}{\mu_{j}} ; \quad w=\sum_{i \geq 0} w_{i}
$$

So the stationary distribution is

$$
\pi_{i}=w_{i} / w
$$

provided (in the infinite-state case) $w<\infty$.
Example. Take $\lambda_{i}=\lambda, \mu_{i}=\mu i$. Then [board] π is the Poisson (λ / μ) distribution.

Note that if the stationary distribution π exists for an infinite-state birth-and-death process, then for the same process on states $\{0,1,2, \ldots, N\}$ the stationary distribution is

$$
\pi_{i}^{[N]}=\pi_{i} / s . \quad s=\sum_{j=0}^{N} \pi_{j}
$$

In other words, taking π as the distribution of a RV Z, $\pi^{[N]}$ is the conditional distribution of Z given $\{Z \leq N\}$.

More theory - similar to discrete-time setting.
[Assume chain is irreducible, and either finite-state or infinite state and positive-recurrent, so a unique stationary distribution π exists.]

- For any initial distribution, $\mathbb{P}(X(t)=i) \rightarrow \pi_{i}$ as $t \rightarrow \infty$.
- Writing $N_{i}(t)=$ length of time chain spends in state i during $[0, t]$, we have $N_{i}(t) / t \rightarrow \pi_{i}$ as $t \rightarrow \infty$.
- $\mathbb{E}_{i} T_{i}^{+}=1 /\left(\pi_{i} q_{i}\right)$, where T_{i}^{+}is the first return time to i (after leaving i).
Note we don't need "aperiodic" in the first result. The third result can be seen by a general "cycle argument" [next slide and board].
(R, T) dependent $0<T, E T<\infty, E|R|<\infty$. $\left(R_{i}, T_{i}\right), i=1,2,3, \quad$ IID copier of (R, T)

Get reward R_{i} after interval of length T_{i}, that is at time $T_{1}+T_{2}+\ldots+T_{i}$.
$Y|t|=$ total reward un to time t

$$
=\sum_{i \geqslant 1} R_{i} 1_{\left(T_{1}++1 / i \leq t\right)}
$$

Theorem "cyatefrick" or "reward renewal theorem"

$$
\frac{T / t 1}{t} \rightarrow \frac{E R}{E T} \text { ar } t \rightarrow \infty \text {. }
$$

