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In continuous time 0 ≤ t <∞ we specify transition rates

qij = lim
δ↓0

P(X (t+δ)=j|X (t)=i, past )
δ

or informally
P(X (t + dt) = j |X (t) = i) = qijdt

but note these are defined only for j 6= i . The time-t distribution π(t)
evolves as

d
dtπ(t) = π(t)Q

where Q is the matrix with off-diagonal entries (qij) and with diagonal
entries defined by

qii = −qi = −
∑
j 6=i

qij .
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There is an alternative “jump and hold” description of a continuous-time
Markov chain.

After jumping into a state i , the process remains in state i for a
random time with Exponential(qi ) distribution.

Then it jumps to some other state, to state j 6= i with probability
p̂ij = qij/qi .

So the matrix
P̂ = (p̂ij), where p̂ii = 0

is the transition matrix for the discrete-time jump chain X̂ (0), X̂ (1), . . .
that shows the successive states visited.
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Example: Yule process

parameter β > 0

states 1, 2, 3, . . .

transition rates qi,i+1 = βi

X (0) = 1.

The differential equations are

d
dtπj(t) = β[(j − 1)πj−1(t)− jπj(t)].

One can solve these equations – see [PK] section 6.1.3

πj(t) = P(X (t) = j) = e−βt(1− e−βt)j−1, j = 1, 2, . . .

In other words X (t) has Geometric e−βt distribution, so EX (t) = eβt .
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The Yule process is a basic example of a continuous-time branching
process [picture on board]

The Yule process is also an example of a “pure birth” process, meaning
the only transitions are i → i + 1. For such processes the distribution of
X (t) can be related to the sum of independent Exponentials RVs – see
[PK] section 6.1.2.
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Example: Linear pure death process [PK] section 6.2.1.

parameter µ > 0

states 0, 1, 2, 3, . . . ,N

transition rates qi,i−1 = µi

X (0) = N.

The differential equations are

d
dtπj(t) = µ[(j + 1)πj+1(t)− jπj(t)].

But one can find the time-t distribution easily via an alternative
description of the process.

N individuals; initially alive, each dies at rate µ.

X (t) = number alive at time t,

Clearly X (t) has Binomial(N, e−µt) distribution.

πj(t) =

(
N

j

)
e−µtj(1− e−µt)N−j .

Note the general pure death process (only transitions are i → i − 1) is
mathematically the same as the general pure birth process.
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Some theory – similar to discrete-time setting.

If the chain is irreducible, and either finite-state or infinite state and
positive-recurrent, then a unique stationary distribution π exists, and is
the solution of πQ = 0, that is∑

i 6=j

πiqij = πjqj for each j .

If you can find weights wi > 0 such that

wiqij = wjqji for each i , j (detailed balance)

then the stationary distribution is

πi = wi/w , w =
∑
j

wj

provided (in the infinite-state case) w <∞.

David Aldous Lecture 21



Birth-and-death chains.

These have states {0, 1, 2, . . . ,N} or {0, 1, 2, . . . . . .} and the only
transitions are i → i ± 1. Write

λi = qi,i+1 (birth rate); µi = qi,i−1 (death rate).

For these chains we can solve the detailed balance equations: [board]

wi =
i∏

j=1

λj−1
µj

; w =
∑
i≥0

wi .

So the stationary distribution is

πi = wi/w

provided (in the infinite-state case) w <∞.

Example. Take λi = λ, µi = µi . Then [board] π is the Poisson(λ/µ)
distribution.
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Note that if the stationary distribution π exists for an infinite-state
birth-and-death process, then for the same process on states
{0, 1, 2, . . . ,N} the stationary distribution is

π
[N]
i = πi/s. s =

N∑
j=0

πj .

In other words, taking π as the distribution of a RV Z ,
π[N] is the conditional distribution of Z given {Z ≤ N}.
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More theory – similar to discrete-time setting.

[Assume chain is irreducible, and either finite-state or infinite state and
positive-recurrent, so a unique stationary distribution π exists.]

For any initial distribution, P(X (t) = i)→ πi as t →∞.

Writing Ni (t) = length of time chain spends in state i during [0, t],
we have Ni (t)/t → πi as t →∞.

EiT
+
i = 1/(πiqi ), where T+

i is the first return time to i (after
leaving i).

Note we don’t need “aperiodic” in the first result. The third result can
be seen by a general “cycle argument” [next slide and board].
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