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In continuous time 0 < t < co we specify transition rates

. B(X(t+8)=j|X(t)=i, past )
lim — P

9 = 510

or informally
P(X(t + dt) = j|X(t) = i) = gjdt

but note these are defined only for j = i. The time-t distribution 7(t)
evolves as

2n(t) =7(t)Q

where Q is the matrix with off-diagonal entries (g;;) and with diagonal

entries defined by
gi = —qi = —qu'j'
J#i
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There is an alternative "jump and hold” description of a continuous-time
Markov chain.

@ After jumping into a state /, the process remains in state / for a
random time with Exponential(g;) distribution.

@ Then it jumps to some other state, to state j # i with probability
Pij = qij/qi-
So the matrix R
P =(p;), wherep;=0

is the transition matrix for the discrete-time jump chain X(0), X(1),...
that shows the successive states visited.
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Example: Yule process

@ parameter 8 > 0

@ states 1,2,3,...

@ transition rates qj 11 = Bi

e X(0)=1.
The differential equations are

smi(t) = BlG — Dmj_a(t) — jmy(t))-
One can solve these equations — see [PK] section 6.1.3
mi(t) =P(X(t) =)= e PH(1—e Pty L j=1,2,...

In other words X(t) has Geometric e~#* distribution, so EX(t) = e”t.
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The Yule process is a basic example of a continuous-time branching
process [picture on board]

The Yule process is also an example of a “pure birth” process, meaning

the only transitions are i — i + 1. For such processes the distribution of
X(t) can be related to the sum of independent Exponentials RVs — see

[PK] section 6.1.2.
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Example: Linear pure death process [PK] section 6.2.1.

@ parameter p >0

@ states 0,1,2,3,..., N

@ transition rates q; ;1 = pi
e X(0)=N.

The differential equations are

smi(8) = pll + Dmjpa(t) — jm(t)]-
But one can find the time-t distribution easily via an alternative
description of the process.
o N individuals; initially alive, each dies at rate p.

e X(t) = number alive at time t,
Clearly X(t) has Binomial(N, e~#*) distribution.

m(t) = (’JV> e Hti(1 — e H)N=,

Note the general pure death process (only transitions are i — i — 1) is
mathematically the same as the general pure birth process.

David Aldous Lecture 21



Some theory — similar to discrete-time setting.

If the chain is irreducible, and either finite-state or infinite state and
positive-recurrent, then a unique stationary distribution 7 exists, and is
the solution of 7Q = 0, that is

Zﬂ;q;j =m;q; for each j.
i

If you can find weights w; > 0 such that

w;qij = w;qji for each i,j  (detailed balance)

then the stationary distribution is
= wi/w, W:ZWJ'
J

provided (in the infinite-state case) w < 0.
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Birth-and-death chains.

These have states {0,1,2,...,N} or {0,1,2,...... } and the only
transitions are i — i + 1. Write

Ai = qii+1 (birth rate); wi = qii—1 (death rate).
For these chains we can solve the detailed balance equations: [board]

i
A1
4 :H ) w = E W;.

o M i>0

So the stationary distribution is
m= wi/w

provided (in the infinite-state case) w < 0.

Example. Take A; = A\, u; = pi. Then [board] 7 is the Poisson(\/p)
distribution.
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Note that if the stationary distribution 7 exists for an infinite-state
birth-and-death process, then for the same process on states
{0,1,2,..., N} the stationary distribution is

N

ﬁ,[N] =mi/s. s= Zﬂ'j.

Jj=0

In other words, taking 7 as the distribution of a RV Z,
7Nl is the conditional distribution of Z given {Z < N}.
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More theory — similar to discrete-time setting.

[Assume chain is irreducible, and either finite-state or infinite state and
positive-recurrent, so a unique stationary distribution 7 exists.]
e For any initial distribution, P(X(t) = i) — m; as t — oo.
e Writing N;(t) = length of time chain spends in state i during [0, t],
we have N;(t)/t — m; as t — 0.
o E;T;* =1/(m;q;), where T;' is the first return time to i (after
leaving 7).
Note we don't need “aperiodic” in the first result. The third result can
be seen by a general “cycle argument” [next slide and board].
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