Lecture 18

David Aldous

9 October 2015

Lemma

If $\left(\xi_{i}\right)$ are the points of a rate-1 PPP on $[0, \infty)$ and if
$G:[0, \infty) \rightarrow[0, \infty)$ is continuous, strictly increasing, with $g(x)=\frac{d G}{d x}$ and $G(0)=0$, then the points $\left(G\left(\xi_{i}\right)\right)$ form another a PPP on $[0, \infty)$ with rate $\lambda(y)=1 / g\left(G^{-1}(y)\right)$.

This allows us to construct (mathematically) the PPP with rate function $\lambda(t)$ by solving (for G) the equation

$$
\lambda(y)=1 / g\left(G^{-1}(y)\right) .
$$

More usefully, because we know how to simulate the rate-1 PPP on $[0, \infty)$ (inter-event times are IID Exponential(1)) this enables us to simulate the PPP with rate function $\lambda(t)$. As an example, consider $G(x)=a x^{1 / 2}$. Then [board] $\lambda(y)=2 y / a^{2}$.
Recall that the distances $D_{1}, D_{2}, D_{3} \ldots$ to the origin in a 2-dimensional rate- λ PPP are the points of a PPP on $[0, \infty)$ with rate function $\lambda(r)=2 \pi \lambda r$. So we can simulate $D_{1}, D_{2}, D_{3} \ldots$ using $G(x)=a x^{1 / 2}$ with $a=(\pi \lambda)^{-1 / 2}$.
[from earlier class, for constant-rate PPP on $[0, \infty)$]

Theorem

Fix $t>0$ and $k \geq 1$. Conditional on $\{N(t)=k\}$ the times $\left(W_{1}, W_{2}, \ldots, W_{k}\right)$ of events in the PPP are distributed as the order statistics of k IID Uniform $(0, t)$ random variables.

The analogous result holds in two dimensions.

Theorem

Let $B \subset \mathbb{R}^{2}$ be a region with finite area. Then the rate- λ PPP on B can be constructed as follows.
(i) Take $N(B)$ with Poisson $(\lambda \times$ area $(B))$ distribution.
(ii) Given $N(B)=n$, take n random points independent uniform on B.

Question: How could we simulate a rate- λ PPP on some region B in \mathbb{R}^{2}.
Not obvious how to simulate, but using theory we see two ways.
(1) If B is a square then we could use Theorem above. Easy to sample uniformly from square in (x, y)- coordinates.
(2) If B is a disc then we know how to simulate the radial distances $D_{1}, D_{2}, D_{3}, \ldots$. So use polar coordinates (D_{i}, θ_{i}); intuitively clear the θ_{i} are IID uniform on ($0,2 \pi$).

Spatial PPP with varying rate $\lambda(x, y)$.

- $N(A)$ has Poisson $\left(\int_{A} \lambda(x, y) d x d y\right)$ distribution.
- $\mathbb{P}($ some point in $[x, x+d x) \times[y, y+d y])=\lambda(x, y) d x d y$.
- For disjoint A_{1}, A_{2}, \ldots the random variables $N\left(A_{i}\right)$ are independent.

An interesting use of this idea is to combine time with space, as follows. Suppose we have a rate- λ PPP of times of events $0<W_{1}<W_{2}<\ldots$. Suppose that associated with the i 'th event is a \mathbb{R}-valued random variable Y_{i}, where (Y_{1}, Y_{2}, \ldots) are IID with density $g(y)$, independent of $\left(W_{i}\right)$. Then we can regard the points $\left(W_{1}, Y_{1}\right),\left(W_{2}, Y_{2}\right), \ldots$ as a point process on $[0, \infty) \times(-\infty, \infty)$.

Theorem (PK Theorem 5.8)

The points $\left(W_{1}, Y_{1}\right),\left(W_{2}, Y_{2}\right), \ldots$ form a Poisson PP with rate $\lambda(t, y)=\lambda g(y)$.

[KP] Exercise 5.6.10.

- You want to sell at item before time 1.
- Bids arrive at times of a rate-1 PPP; you must accept/reject bis at that time.
- Bid amounts U_{1}, U_{2}, \ldots are IID Uniform $[0,1]$.

What is a good strategy?
Strategy A; Fix a price θ and accept first bid over θ.
Analysis [board]:

$$
\mathbb{E}(\text { price received })=\frac{1+\theta}{2}\left(1-e^{-(1-\theta)}\right)
$$

Intuition suggests it would be better to use a decreasing threshold for accepting a bid.

Strategy B; Accept the first bid which (at time t) is larger than $\theta(t)=\frac{1-t}{3-t}$.
[details on board: outline here].
(a) Points $\left(T_{i}, U_{i}\right)$ are PPP on $[0,1] \times[0,1]$ of rate $\lambda(t, u)=\lambda g u(u)=1$.
(b) Consider
$g(t, u) d t d u=\mathbb{P}($ bid offered and accepted in $[t, t+d t] \times[u, u+d u])$. After a calculation, $g(t, u)=\left(1-\frac{t}{3}\right)^{2}$.
(c)

$$
\mathbb{E}(\text { price received })=\iint_{D_{1}} u g(t, u) d t d u .
$$

