Lecture 18

David Aldous

9 October 2015

・ロン ・四 と ・ ヨ と ・ ヨ と …

= 900

Lemma

If (ξ_i) are the points of a rate-1 PPP on $[0,\infty)$ and if $G: [0,\infty) \to [0,\infty)$ is continuous, strictly increasing, with $g(x) = \frac{dG}{dx}$ and G(0) = 0, then the points $(G(\xi_i))$ form another a PPP on $[0, \infty)$ with rate $\lambda(y) = 1/g(G^{-1}(y))$.

This allows us to construct (mathematically) the PPP with rate function $\lambda(t)$ by solving (for G) the equation

$$\lambda(y) = 1/g(G^{-1}(y)).$$

More usefully, because we know how to simulate the rate-1 PPP on $[0,\infty)$ (inter-event times are IID Exponential(1)) this enables us to **simulate** the PPP with rate function $\lambda(t)$.

As an example, consider $G(x) = ax^{1/2}$. Then [board] $\lambda(y) = 2y/a^2$.

Recall that the distances $D_1, D_2, D_3...$ to the origin in a 2-dimensional rate $-\lambda$ PPP are the points of a PPP on $[0,\infty)$ with rate function $\lambda(r) = 2\pi\lambda r$. So we can simulate $D_1, D_2, D_3...$ using $G(x) = ax^{1/2}$ with $a = (\pi \lambda)^{-1/2}$.

[from earlier class, for constant-rate PPP on $[0,\infty)$]

Theorem

Fix t > 0 and $k \ge 1$. Conditional on $\{N(t) = k\}$ the times (W_1, W_2, \ldots, W_k) of events in the PPP are distributed as the order statistics of k IID Uniform(0, t) random variables.

The analogous result holds in two dimensions.

Theorem

Let $B \subset \mathbb{R}^2$ be a region with finite area. Then the rate- λ PPP on B can be constructed as follows. (i) Take N(B) with Poisson($\lambda \times \operatorname{area}(B)$) distribution. (ii) Given N(B) = n, take n random points independent uniform on B.

イロト 不得 トイヨト イヨト 二日

Question: How could we simulate a rate- λ PPP on some region *B* in \mathbb{R}^2 . Not obvious how to simulate, but using theory we see two ways.

(1) If B is a square then we could use Theorem above. Easy to sample uniformly from square in (x,y)- coordinates.

(2) If *B* is a disc then we know how to simulate the radial distances D_1, D_2, D_3, \ldots . So use polar coordinates (D_i, θ_i) ; intuitively clear the θ_i are IID uniform on $(0, 2\pi)$.

(ロ) (同) (三) (三) (三) (○)

Spatial PPP with varying rate $\lambda(x, y)$ **.**

- N(A) has Poisson $(\int_A \lambda(x, y) dx dy)$ distribution.
- $\mathbb{P}(\text{ some point in } [x, x + dx) \times [y, y + dy]) = \lambda(x, y) dxdy.$
- For disjoint A_1, A_2, \ldots the random variables $N(A_i)$ are independent.

An interesting use of this idea is to combine time with space, as follows. Suppose we have a rate- λ PPP of times of events $0 < W_1 < W_2 < \ldots$. Suppose that associated with the *i*'th event is a \mathbb{R} -valued random variable Y_i , where (Y_1, Y_2, \ldots) are IID with density g(y), independent of (W_i) . Then we can regard the points (W_1, Y_1) , (W_2, Y_2) , \ldots as a point process on $[0, \infty) \times (-\infty, \infty)$.

Theorem (PK Theorem 5.8)

The points (W_1, Y_1) , (W_2, Y_2) , ... form a Poisson PP with rate $\lambda(t, y) = \lambda g(y)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のので

[KP] Exercise 5.6.10.

- You want to sell at item before time 1.
- Bids arrive at times of a rate-1 PPP; you must accept/reject bis at that time.
- Bid amounts U_1, U_2, \ldots are IID Uniform [0, 1].

What is a good strategy?

Strategy A; Fix a price θ and accept first bid over θ .

Analysis [board]:

$$\mathbb{E}(\text{ price received}) = \frac{1+\theta}{2} (1 - e^{-(1-\theta)}).$$

Intuition suggests it would be better to use a decreasing threshold for accepting a bid.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のので

Strategy B; Accept the first bid which (at time *t*) is larger than $\theta(t) = \frac{1-t}{3-t}$.

[details on board: outline here].

(a) Points (T_i, U_i) are PPP on $[0, 1] \times [0, 1]$ of rate $\lambda(t, u) = \lambda g_U(u) = 1$. (b) Consider $g(t, u)dtdu = \mathbb{P}($ bid offered and accepted in $[t, t + dt] \times [u, u + du])$. After a calculation, $g(t, u) = (1 - \frac{t}{3})^2$. (c)

$$\mathbb{E}(\text{ price received}) = \int \int_{D_1} u \ g(t, u) \ dt du.$$

(ロ) (同) (三) (三) (三) (○)