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Lemma

If (ξi ) are the points of a rate-1 PPP on [0,∞) and if
G : [0,∞)→ [0,∞) is continuous, strictly increasing, with g(x) = dG

dx
and G (0) = 0, then the points (G (ξi )) form another a PPP on [0,∞)
with rate λ(y) = 1/g(G−1(y)).

This allows us to construct (mathematically) the PPP with rate function
λ(t) by solving (for G ) the equation

λ(y) = 1/g(G−1(y)).

More usefully, because we know how to simulate the rate-1 PPP on
[0,∞) (inter-event times are IID Exponential(1)) this enables us to
simulate the PPP with rate function λ(t).
As an example, consider G (x) = ax1/2. Then [board] λ(y) = 2y/a2 .

Recall that the distances D1,D2,D3 . . . to the origin in a 2-dimensional
rate−λ PPP are the points of a PPP on [0,∞) with rate function
λ(r) = 2πλr . So we can simulate D1,D2,D3 . . . using G (x) = ax1/2 with
a = (πλ)−1/2.
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[from earlier class, for constant-rate PPP on [0,∞)]

Theorem

Fix t > 0 and k ≥ 1. Conditional on {N(t) = k} the times
(W1,W2, . . . ,Wk) of events in the PPP are distributed as the order
statistics of k IID Uniform(0, t) random variables.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

The analogous result holds in two dimensions.

Theorem

Let B ⊂ R2 be a region with finite area. Then the rate-λ PPP on B can
be constructed as follows.
(i) Take N(B) with Poisson(λ× area(B)) distribution.
(ii) Given N(B) = n, take n random points independent uniform on B.
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Question: How could we simulate a rate-λ PPP on some region B in R2.

Not obvious how to simulate, but using theory we see two ways.

(1) If B is a square then we could use Theorem above. Easy to sample
uniformly from square in (x,y)- coordinates.

(2) If B is a disc then we know how to simulate the radial distances
D1,D2,D3, . . .. So use polar coordinates (Di , θi ); intuitively clear the θi
are IID uniform on (0, 2π).
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Spatial PPP with varying rate λ(x , y).

N(A) has Poisson(
∫
A
λ(x , y)dxdy) distribution.

P( some point in [x , x + dx)× [y , y + dy ] ) = λ(x , y)dxdy .

For disjoint A1,A2, . . . the random variables N(Ai ) are independent.

An interesting use of this idea is to combine time with space, as follows.
Suppose we have a rate-λ PPP of times of events 0 < W1 < W2 < . . ..
Suppose that associated with the i ’th event is a R-valued random
variable Yi , where (Y1,Y2, . . .) are IID with density g(y), independent of
(Wi ). Then we can regard the points (W1,Y1), (W2,Y2), . . . as a point
process on [0,∞)× (−∞,∞).

Theorem ( PK Theorem 5.8)

The points (W1,Y1), (W2,Y2), . . . form a Poisson PP with rate
λ(t, y) = λg(y).
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[KP] Exercise 5.6.10.

You want to sell at item before time 1.

Bids arrive at times of a rate-1 PPP; you must accept/reject bis at
that time.

Bid amounts U1,U2, . . . are IID Uniform [0, 1].

What is a good strategy?

Strategy A; Fix a price θ and accept first bid over θ.

Analysis [board]:

E( price received) = 1+θ
2 (1− e−(1−θ)).

Intuition suggests it would be better to use a decreasing threshold for
accepting a bid.
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Strategy B; Accept the first bid which (at time t) is larger than
θ(t) = 1−t

3−t .

[details on board: outline here].

(a) Points (Ti ,Ui ) are PPP on [0, 1]× [0, 1] of rate λ(t, u) = λgU(u) = 1.

(b) Consider
g(t, u)dtdu = P( bid offered and accepted in [t, t + dt]× [u, u + du]).
After a calculation, g(t, u) = (1− t

3 )2.

(c)

E( price received) =

∫ ∫
D1

u g(t, u) dtdu.
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