Lecture 17

David Aldous

7 October 2015

Ideas from previous lecture.
Notation for studying random times (of events) over $0 \leq t<\infty$. Cannot have two events at the same time.

- $W_{k}=$ time at which k 'th event occurs $\left(W_{0}=0\right)$.
- $S_{k}=W_{k}-W_{k-1}$ is the time between successive events.
- $N(t)=$ number of events during time $[0, t]$.
- $N(s, t)=N(t)-N(s)=$ number of events during $(s, t]$.

Note that the event $\left\{W_{n} \leq t\right\}$ is the same as the event $\{N(t) \geq n\}$. So, regardless of the probability model,

$$
\mathbb{P}\left(W_{n} \leq t\right)=\mathbb{P}(N(t) \geq n)
$$

Poisson point process (PPP) of rate λ.

This process is defined by the properties
(a) $N(s, t)$ has Poisson $(\lambda(t-s))$ distribution.
(b) For disjoint intervals $\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right), \ldots,\left(s_{k}, t_{k}\right)$ the random variables $N\left(s_{1}, t_{1}\right), N\left(s_{2}, t_{2}\right), \ldots, N\left(s_{k}, t_{k}\right)$ are independent.

A more informal description in terms of infinitesimal intervals is (a') $\mathbb{P}($ event during $[t, t+d t])=\lambda d t$
(b') What happens in disjoint time intervals is independent.
The PPP is used as an over-simplified model for events that occur at "completely random" times

Theorem

Given two independent PPPs with rates λ_{1} and λ_{2}, the combined process - that is the process with $N(t)=N_{1}(t)+N_{2}(t)$ - is a PPP with rate $\lambda_{1}+\lambda_{2}$.

Theorem

Let p_{1}, p_{2}, \ldots be a probability distribution on "colors" $1,2,3, \ldots$. Take a rate- λ PPP, and assign colors to the points, each point independently getting color i with probability p_{i}. Then
(i) For each i the process of color-i points is a PPP with rate λp_{i}.
(ii) These processes are independent as i varies.

For instance, if we model times of "accidents" as a rate- λ PPP, and then model each accident as "serious" with probability p and "not serious" with probability $1-p$, then

- serious accidents occur as a PPP of rate λp
- non-serious accidents occur as a PPP of rate $\lambda(1-p)$
- the two processes are independent.
"Independence" here looks intuitively wrong but arises from the assumption that λ is known.

Spatial Poisson processes

We have been imagining the line $[0, \infty)$ as "time", but the mathematics is the same for 1-dimensional space - for instance, positions of accidents along a highway.

More interesting to consider random points in 2-dimensional space. Here the rate λ will be the mean number of points per unit area. Write $N(A)$ for the number of points in a region A. The rate- λ PPP on \mathbb{R}^{2} is defined by the properties

- $N(A)$ has $\operatorname{Poisson}(\lambda \times \operatorname{area}(A))$ distribution.
- For disjoint A_{1}, A_{2}, \ldots the random variables $N\left(A_{i}\right)$ are independent.

This is used as a model of "purely random" points.

In a rate- λ PPP on \mathbb{R}^{2}, let D_{k} be the distance from the origin to the k 'th closest point.

Here are some results about this [board].
D_{1} has density $f_{D_{1}}(x)=2 \pi \lambda x \exp \left(-\pi \lambda x^{2}\right)$.
$D_{1}, D_{2}, D_{3} \ldots$ are the points of a PPP on $[0, \infty)$ with rate function $\lambda(r)=2 \pi \lambda r$.

The PPP with rate function $\lambda(t)$.
Start with the informal description in terms of infinitesimal intervals:
(a') $\mathbb{P}($ event during $[t, t+d t])=\lambda(t) d t$
(b') What happens in disjoint time intervals is independent.
We can then deduce the other description. Write $\Lambda(t)=\int_{0}^{t} \lambda(u) d u$.
(a) $N(s, t)$ has Poisson $(\Lambda(t)-\Lambda(s))$ distribution.
(b) For disjoint intervals $\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right), \ldots,\left(s_{k}, t_{k}\right)$ the random variables $N\left(s_{1}, t_{1}\right), N\left(s_{2}, t_{2}\right), \ldots, N\left(s_{k}, t_{k}\right)$ are independent.

We can explain this via a general result and then a special result. [board]

Lemma

If $\left(\xi_{i}\right)$ are the points of a PPP (in time or space, and maybe varying rate) then for any function G the points $\left(G\left(\xi_{i}\right)\right.$) form another PPP (typically with varying rate).

Lemma

If $\left(\xi_{i}\right)$ are the points of a rate- 1 PPP on $[0, \infty)$ and if $G:[0, \infty) \rightarrow[0, \infty)$ is continuous, strictly increasing, with $g(x)=\frac{d G}{d x}$ and $G(0)=0$, then the points $\left(G\left(\xi_{i}\right)\right)$ form another a PPP on $[0, \infty)$ with rate $\lambda(y)=1 / g\left(G^{-1}(y)\right)$.

