Lecture 17

David Aldous

7 October 2015

・ロト ・回ト ・ヨト ・ヨト

= 900

Ideas from previous lecture.

Notation for studying random times (of events) over $0 \le t < \infty$. Cannot have two events at the same time.

- W_k = time at which k'th event occurs ($W_0 = 0$).
- $S_k = W_k W_{k-1}$ is the time between successive events.
- N(t) = number of events during time [0, t].
- N(s,t) = N(t) N(s) = number of events during (s,t].

Note that the event $\{W_n \leq t\}$ is the same as the event $\{N(t) \geq n\}$. So, regardless of the probability model,

$$\mathbb{P}(W_n \leq t) = \mathbb{P}(N(t) \geq n).$$

Poisson point process (PPP) of rate λ .

This process is defined by the properties (a) N(s, t) has $Poisson(\lambda(t - s))$ distribution. (b) For disjoint intervals (s_1, t_1) , (s_2, t_2) , ..., (s_k, t_k) the random variables $N(s_1, t_1)$, $N(s_2, t_2)$, ..., $N(s_k, t_k)$ are independent.

A more informal description in terms of infinitesimal intervals is (a') $\mathbb{P}(\text{ event during } [t, t + dt]) = \lambda dt$ (b') What happens in disjoint time intervals is independent.

The PPP is used as an over-simplified model for events that occur at "completely random" times

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 うのの

Theorem

Given two independent PPPs with rates λ_1 and λ_2 , the combined process - that is the process with $N(t) = N_1(t) + N_2(t)$ - is a PPP with rate $\lambda_1 + \lambda_2$.

Theorem

Let p_1, p_2, \ldots be a probability distribution on "colors" 1, 2, 3, \ldots Take a rate- λ PPP, and assign colors to the points, each point independently getting color i with probability p_i . Then (i) For each i the process of color-i points is a PPP with rate λp_i . (ii) These processes are independent as i varies.

For instance, if we model times of "accidents" as a rate- λ PPP, and then model each accident as "serious" with probability p and "not serious" with probability 1 - p, then

- serious accidents occur as a PPP of rate λp
- non-serious accidents occur as a PPP of rate $\lambda(1-p)$
- the two processes are independent.

"Independence" here looks intuitively wrong but arises from the assumption that λ is known. (ロ) (同) (E) (E) (E)

Spatial Poisson processes

We have been imagining the line $[0,\infty)$ as "time", but the mathematics is the same for 1-dimensional space – for instance, positions of accidents along a highway.

More interesting to consider random points in 2-dimensional space. Here the rate λ will be the mean number of points per unit area. Write N(A) for the number of points in a region A. The rate- λ PPP on \mathbb{R}^2 is defined by the properties

- N(A) has Poisson $(\lambda \times area(A))$ distribution.
- For disjoint A_1, A_2, \ldots the random variables $N(A_i)$ are independent.

This is used as a model of "purely random" points.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 うのの

In a rate- λ PPP on \mathbb{R}^2 , let D_k be the distance from the origin to the k'th closest point.

Here are some results about this [board].

 D_1 has density $f_{D_1}(x) = 2\pi\lambda x \exp(-\pi\lambda x^2)$.

 $D_1, D_2, D_3 \dots$ are the points of a PPP on $[0, \infty)$ with rate function $\lambda(r) = 2\pi\lambda r$.

|▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ | 臣 | のへで

The PPP with rate function $\lambda(t)$.

Start with the informal description in terms of infinitesimal intervals: (a') $\mathbb{P}(\text{ event during } [t, t + dt]) = \lambda(t) dt$

(b') What happens in disjoint time intervals is independent.

We can then deduce the other description. Write $\Lambda(t) = \int_0^t \lambda(u) \, du$.

(a) N(s, t) has Poisson $(\Lambda(t) - \Lambda(s))$ distribution. (b) For disjoint intervals (s_1, t_1) , (s_2, t_2) , ..., (s_k, t_k) the random variables $N(s_1, t_1)$, $N(s_2, t_2)$, ..., $N(s_k, t_k)$ are independent.

We can explain this via a general result and then a special result. [board]

Lemma

If (ξ_i) are the points of a PPP (in time or space, and maybe varying rate) then for any function G the points $(G(\xi_i))$ form another PPP (typically with varying rate).

Lemma

If (ξ_i) are the points of a rate-1 PPP on $[0,\infty)$ and if $G:[0,\infty) \to [0,\infty)$ is continuous, strictly increasing, with $g(x) = \frac{dG}{dx}$ and G(0) = 0, then the points $(G(\xi_i))$ form another a PPP on $[0,\infty)$ with rate $\lambda(y) = 1/g(G^{-1}(y))$.