Lecture 16

David Aldous

5 October 2015

Notation for studying random times (of events) over $0 \leq t<\infty$. Cannot have two events at the same time.

- $W_{k}=$ time at which k 'th event occurs $\left(W_{0}=0\right)$.
- $S_{k}=W_{k}-W_{k-1}$ is the time between successive events.
- $N(t)=$ number of events during time $[0, t]$.
- $N(s, t)=N(t)-N(s)=$ number of events during $(s, t]$.

Note that the event $\left\{W_{n} \leq t\right\}$ is the same as the event $\{N(t) \geq n\}$. So, regardless of the probability model,

$$
\mathbb{P}\left(W_{n} \leq t\right)=\mathbb{P}(N(t) \geq n)
$$

We will study the mathematically simplest probability model. Fix a parameter $0<\lambda<\infty$.

Poisson point process (PPP) of rate λ.

This process is defined by the properties
(a) $N(s, t)$ has Poisson $(\lambda(t-s))$ distribution.
(b) For disjoint intervals $\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right), \ldots,\left(s_{k}, t_{k}\right)$ the random variables $N\left(s_{1}, t_{1}\right), N\left(s_{2}, t_{2}\right), \ldots, N\left(s_{k}, t_{k}\right)$ are independent.

Why does such a process exist? Consider large M, and suppose events could only happen at times $\frac{1}{M}, \frac{2}{M}, \frac{3}{M}, \ldots$, independently with probability λ / M. Then the number of events during (s, t) is almost Binomial $(M(t-s), \lambda / M)$. We picture the PPP as the $M \rightarrow \infty$ limit, and the Poisson distribution arises as limit of Binomials.

A more informal description in terms of infinitesimal intervals is (a') $\mathbb{P}($ event during $[t, t+d t])=\lambda d t$
(b') What happens in disjoint time intervals is independent.
Conceptual point; "Poisson" is not an arbitrary assumption, but instead arises automatically from (a^{\prime}, b^{\prime}). Also λ is a "rate": the mean number of events per unit time.

The PPP is used as an over-simplified model for events that occur at "completely random" times

- accidents
- coincidences
- start of phone calls (from phone company viewpoint)
- customer joining supermarket checkout line (from the supermarket viewpoint)
- earthquakes
- murders

For many of these examples we know that in fact the rates vary with time. But we can adapt the model to allow a time-varying rate function $\lambda(t)$.

The PPP with rate function $\lambda(t)$.

Start with the informal description in terms of infinitesimal intervals:
(a') $\mathbb{P}($ event during $[t, t+d t])=\lambda(t) d t$
(b') What happens in disjoint time intervals is independent.
We can then deduce the other description. Write $\Lambda(t)=\int_{0}^{t} \lambda(u) d u$.
(a) $N(s, t)$ has Poisson $(\Lambda(t)-\Lambda(s))$ distribution.
(b) For disjoint intervals $\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right), \ldots,\left(s_{k}, t_{k}\right)$ the random variables $N\left(s_{1}, t_{1}\right), N\left(s_{2}, t_{2}\right), \ldots, N\left(s_{k}, t_{k}\right)$ are independent.
We will see details later. For now, the mathematical point is that we can deduce results for the "rate function $\lambda(t)$ " case from results for the "constant rate λ " case, so we can set up theory in the constant rate case. A modeling point is that any process of random events has some mean rate function $\lambda(t)$ - what is special about the Poisson process is the independence property. Is this approximately true in a given example?

Poisson point process (PPP) of rate λ defined by the properties
(a) $N(s, t)$ has Poisson $(\lambda(t-s))$ distribution.
(b) For disjoint intervals $\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right), \ldots,\left(s_{k}, t_{k}\right)$ the random variables $N\left(s_{1}, t_{1}\right), N\left(s_{2}, t_{2}\right), \ldots, N\left(s_{k}, t_{k}\right)$ are independent.
In this model we will consider

- $W_{k}=$ time at which k 'th event occurs $\left(W_{0}=0\right)$.
- $S_{k}=W_{k}-W_{k-1}$ is the time between successive events.

The first results are [board]

- W_{1} has Exponential (λ) distribution
- W_{k} has $\operatorname{Gamma}(\lambda, k)$ distribution:

$$
f_{W_{k}}(t)=\frac{\lambda^{k} t^{k-1} e^{-\lambda t}}{(k-1)!}
$$

- $S_{1}, S_{2}, S_{3}, \ldots$ are IID Exponential (λ).

Note that we can use the fact

$$
S_{1}, S_{2}, S_{3}, \ldots \text { are IID Exponential }(\lambda)
$$

as a (mathematical) construction of the PPP, or as an easy way to simulate the process.

Here is the next result.

Theorem

Fix $t>0$ and $k \geq 1$. Conditional on $\{N(t)=k\}$ the times $\left(W_{1}, W_{2}, \ldots, W_{k}\right)$ of events in the PPP are distributed as the order statistics of k IID Uniform $(0, t)$ random variables.
[board]
The same result holds if instead we condition on $\left\{W_{k+1}=t\right\}$.

