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Ideas used in Lecture 9.

If µ(t) (the distribution of X (t)) converges to a limit distribution π,
then the limit π must be a stationary distribution and
(mean proportion of time at i before t)→ πi .

Theorem about existence and formula for stationary distribution.

Current material treated in sections 4.3, 4.4 of [PK].

Before continuing, some reminders about the distinction between random
variables and probability distributions, and the difference between
convergence of random variables and convergence of probability
distributions.
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Given a random variable X , its distribution describes the probabilities of
the possible values;

X die throw; π1 = 1/6, π2 = 1/6, . . . , π6 = 1/6

Z standard Normal(0, 1): density function φ(z) or distribution
function Φ(z).

If X1 and X2 are independent dice throws then they have the same
distribution. But P(X1 = X2) = 1/6, so they are not the same random
variable.

Two random variables X and Y are regarded as “the same” if
P(X = Y ) = 1.
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“Convergence in distribution” of random variables means “convergence
of their distributions”. For real-valued random variables this is illustrated
by the central limit theorem.

For i.i.d. (ξi ) with mean θ and variance σ2,

S̄n :=

∑n
i−1 ξi − nθ

σ
√

n
→d Z

for standard Normal Z .. The “convergence in distribution” symbol →d

here means

P(S̄n ≤ z)→ P(Z ≤ z) = Φ(z) for each −∞ < z <∞.
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In a more advanced course there are several related notions of
“convergence of random variables”. Given (X1,X2, . . .) and also X∞ then
(going back to the formal math set-up, where a RV is a function from a
sample space Ω to a range space, here R) there is an event

{ω : Xn(ω)→ X∞(ω) as n→∞}

which has some probability. We say

Xn → X∞ a.s.

to mean P(Xn → X∞ as n→∞) = 1. Here ”a.s.” is an abbreviation for
”almost surely”. Note that X∞ might be a constant.

As a basic example, the “law of averages” can be formalized as the
strong law of large numbers: For i.i.d. (ξi ) with mean θ,

n−1
n∑

i=1

ξi → θ a,s..
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Recall Ti = min{t ≥ 0 : Xt = i} and define also the return time

T+
i = min{t ≥ 1 : Xt = i}.

Fix a reference state b.

Theorem

Suppose irreducible.
(a) If state space is finite then EbT+

b <∞.
(b) Suppose EbT+

b <∞. Define

a(b, i) = Eb

T+
b∑

s=1

11(X (s)=i)

= mean number of visits to i before returning to b. So a(b, b) = 1. Then

πi =
a(b, i)

EbT+
b

is a stationary distribution, and is the only stationary distribution.
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Discussion.
(a) There is a calculation which checks this π does satisfy π = πP.
(b) Because π is the same for each choice of b we have another formula

πi = 1
EiT

+
i

for each i .

(c) For an irreducible chain, the properties
EiT

+
i <∞ for some i

EiT
+
i <∞ for all i

are equivalent. When these hold we call the chain positive-recurrent.
(d) The theorem implies that every finite-state irreducible chain is
positive-recurrent. So every finite-state irreducible chain has a unique
stationary distribution.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Limit theory for Markov chains combines this theorem with the next two
theorems. The first is about convergence of distributions, the second is
about convergence of random variables.

David Aldous Lecture 10



Theorem

If the chain is irreducible, positive-recurrent and aperiodic, then for any
initial distribution

P(X (t) = j)→ πj as t →∞

where π is the unique stationary distribution.

Theorem

Write

Ni (t) =
t−1∑
s=0

11(X (s)=i) = number of visits to i before t.

If the chain is irreducible and positive-recurrent, then for any initial
distribution

t−1Ni (t)→ πi a.s. as t →∞.

Note this implies but is stronger than previous fact

E[t−1Ni (t)]→ πi as t →∞.
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A final result is rather subtle. Note we only need this when the state
space is infinite.

Proposition

If irreducible, if there exists a probability distribution π satisfying
π = πP, then the chain is positive-recurrent.

Then we can apply previous theorems and this π is the unique stationary
distribution.

See texts for proofs. I want to focus on what these results say, in our
specific examples.
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Recall that for a doubly-stochastic chain the stationary distribution is the
uniform distribution.

Card-shuffling examples. Theory implies that for any “non-stupid”
random shuffle model, the distribution will eventually become closer and
closer to uniform.

Simple random walk on the n-by-n torus.
[board]
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Example: Umbrellas.

A man owns K umbrellas, which are either at home or at work.

He goes to work each morning, and goes home each evening.

If raining, he takes an umbrella, if one is available. If not raining he
does not take an umbrella.

Model (unrealistic) that P( rain ) = p, independently, each morning
and evening.

To set up as a Markov chain, consider

Xt = number of umbrellas at home, end of day t.

States {0, 1, . . . ,K} .

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

p01 = p, p00 = 1− p

pK ,K−1 = p(1− p), pKK = 1− p(1− p)

pi,i+1 = pi,i−1 = p(1− p), pii = 1− 2p(1− p), 1 ≤ i ≤ K − 1.
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