STATISTICS 134

There are 9 questions, worth a total of 49 points. Calculations should be worked through to an explicit numerical answer. Show your work!

1. [5 points] Let U be a continuous r.v. with uniform distribution on $(0,1)$. Let $X=\log \frac{U}{1-U}$. Find a formula for the density function $f(x)$ of X.
2. [5 points] A box contains n tags numbered $1,2, \ldots, n$. Two tags are drawn without replacement, giving two numbers: write X for the smaller and Y for the larger number. Calculate $P(Y=X+1)$.
3. [5 points] Consider Poisson random scatter with intensity λ on the plane. Let (X, Y) be the coordinates of the random point of the scatter which is closest to the origin. Find the joint density function $f(x, y)$ of (X, Y)
4. [5 points] A roulette wheel has 38 slots, of which 18 are red and 18 are black. In 100 spins of the wheel, let R be the number of "reds" and let B be the number of "blacks". Calculate the correlation $\operatorname{cor}(R, B)$.
5. [5 points] A statistics class has 23 students. As part of an assignment, each student tosses a coin 200 times and records the number of heads. What is the chance than no student gets exactly 100 heads?
6. [5 points] Let X and Y be independent r.v.'s with $E X=E Y=\mu$ and var $X=\operatorname{var} Y=\sigma^{2}$. Write $Z=X Y$. Calculate var Z in terms of μ and σ.
7. [8 points] Let X and Y be continuous r.v.'s with joint density

$$
\begin{aligned}
f(x, y)=0.5+2 x y & \text { if } 0<x<1 \text { and } 0<y<1 \\
=0 & \text { if not } .
\end{aligned}
$$

(a) Find the marginal density of X.
(b) Do X and Y have the same marginal density? Explain.
(c) Are X and Y independent? Explain.
(d) Calculate $P(X+Y<1)$.
8. [6 points] Let X_{1} and X_{2} be independent continuous r.v.'s with distribution function

$$
F(x)=\exp \left(-e^{-x}\right),-\infty<x<\infty
$$

(a) What is the distribution function of $X_{1}+c$, for constant c ?
(b) What is the distribution function of $M=\max \left(X_{1}, X_{2}\right)$?
(c) True or false (and explain): for a certain constant c, the random variable $X_{1}+c$ has the same distribution as the random variable M.
9. [5 points] Let X and Y be independent r.v.'s with standard $\operatorname{Normal}(0,1)$ distribution. Find the conditional distribution of X given $X=Y$.

