Bayes rule: updating probabilities as new information is acquired.
Abstract set-up: Partition $\left(B_{1}, B_{2}, \ldots\right)$ of "alternate possibilities". Know prior probabilities $P\left(B_{i}\right)$.
Then observe some event A happens (the "new information") for which we know $P\left(A \mid B_{i}\right)$. We want to calculate the posterior probabilities $P\left(B_{i} \mid A\right)$.

Bayes formula:

$$
P\left(B_{i} \mid A\right)=\frac{P\left(A \mid B_{i}\right) P\left(B_{i}\right)}{P\left(A \mid B_{1}\right) P\left(B_{1}\right)+P\left(A \mid B_{2}\right) P\left(B_{2}\right)+\ldots}
$$

Example used by psychologists in studying how people think about probability.

Two cab companies serve a city: the Green company operates 85% of the cabs and the Blue company operates 15% of the cabs. One of the cabs is involved in a hit-and-run accident at night, and a witness identifies the hit-and-run cab as a Blue cab. When the court tests the reliability of the witness under circumstances similar to those on the night of the accident, he correctly identifies the color of a cab 80% of the time and misidentifies it the other 20% of the time. What is the probability that the cab involved in the accident was Blue, as stated by the witness?
Many people answer " 80% ". What does Bayes formula say?
[calculation on board]

Example: Suppose a test for a disease generates the following results:
(i) If a tested patient has the disease, the test returns a positive result 99% of the time.
(ii) If a tested patient does not have the disease, the test returns a negative result 95% of the time.

Suppose also that only 0.1% of the population has that disease.
Consider a person who takes the test and gets a positive result. What is the probability the person really has the disease?

Answer: You can't say, without knowing something about why the person was taking the test. Here are two scenarios.
scenario 1. A patient with symptoms visits a doctor.
scenario 2. Mass screening of whole population.
[calculation on board]
[see http://understandinguncertainty.org/node/182 for some actual data and visualization]

Balls in boxes; conceptual model covers many different stories.
N boxes and k balls. Put each ball independently into a random box.
We'll study the event
A_{k} : "first k balls all in different boxes".

$$
\begin{aligned}
P\left(A_{2}\right) & =\frac{N-1}{N} \\
P\left(A_{3} \mid A_{2}\right) & =\frac{N-2}{N} \\
P\left(A_{4} \mid A_{3}\right) & =\frac{N-3}{N} \\
& \cdots \\
P\left(A_{k} \mid A_{k-1}\right) & =\frac{N-(k-1)}{N}
\end{aligned}
$$

and so

$$
\begin{gathered}
P\left(A_{3}\right)=P\left(A_{3} \mid A_{2}\right) \times P\left(A_{2}\right)=\frac{N-2}{N} \times \frac{N-1}{N} \\
P\left(A_{4}\right)=P\left(A_{4} \mid A_{3}\right) \times P\left(A_{3}\right)=\frac{N-3}{N} \times \frac{N-2}{N} \times \frac{N-1}{N} \\
P\left(A_{k}\right)=P\left(A_{k} \mid A_{k-1}\right) \times P\left(A_{k-1}\right)= \\
=\frac{N-(k-1)}{N} \times \frac{N-(k-2)}{N} \times \ldots \times \frac{N-1}{N} \times \frac{N}{N}=[\text { board }]
\end{gathered}
$$

Birthday problem. k people in a room. What is the chance some 2 people have the same birthday?

Model: each person's birthday is equally likely to be any of the 365 days, independently.
Under this model, situation is same as in "balls in boxes" model with $N=365$ boxes:

$$
\begin{gathered}
P(\text { some } 2 \text { people have the same birthday) } \\
=1-P \text { (all } k \text { people have different birthdays) } \\
=1-\frac{365!}{(365-k)!365^{k}} .
\end{gathered}
$$

A well-known surprising fact is that, for this chance to be $\approx 50 \%$, you need only $k=23$ people.
[Wikipedia: Birthday problem]

The birthday problem gives a nice illustration of the use of calculus approximations. For small x

$$
\begin{gathered}
e^{-x} \approx 1-x \\
\log (1-x) \approx-x
\end{gathered}
$$

Looking at the "balls in boxes" formula for the event A_{k} : "first k balls all in different boxes":

$$
\begin{aligned}
\log P\left(A_{k}\right) & =\sum_{i=1}^{k-1} \log \left(1-\frac{i}{N}\right) \\
& \approx \sum_{i=1}^{k-1}-\frac{i}{N}=-\frac{(k-1) k}{2 N}
\end{aligned}
$$

and so

$$
P\left(A_{k}\right) \approx \exp \left(-\frac{(k-1) k}{2 N}\right)
$$

Useful because we can see, for large N, how large k must be to make this chance be $1 / 2$ say: solve

$$
\begin{aligned}
& \frac{1}{2}=\exp \left(-\frac{(k-1) k}{2 N}\right) \\
& \text { to get } k \approx 0.5+\sqrt{2 \log 2} \sqrt{N} \approx 1.18 \sqrt{N}+0.5
\end{aligned}
$$

Example. Throw 2 dice, add up the two numbers. The result must be between 2 and 12 . We can easily calculate the probabilities $p(i)$ that the sum is exactly i.

$$
\begin{array}{cccccccccccc}
i & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
p(i) & \frac{1}{36} & \frac{2}{36} & \frac{3}{36} & \frac{4}{36} & \frac{5}{36} & \frac{6}{36} & \frac{5}{36} & \frac{4}{36} & \frac{3}{36} & \frac{2}{36} & \frac{1}{36}
\end{array}
$$

This is an example of a probability distribution (usually abbreviated to distribution). There are 4 ways we might specify a particular distribution.
(1) Via a numerical table, as above.
(2) Via a formula [board]
(3) Via a graphic - a probability histogram, in this case. Note this is
similar to a data histogram.
(4) By saying the name of the distribution, if there is a standard name.
[Wikipedia: List of probability distributions]

