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In the critical beta-splitting model of a random n-leaf binary tree, leaf-
sets are recursively split into subsets, and a set of m leaves is split into subsets
containing i and m − i leaves with probabilities proportional to 1/i(m − i).
We study the continuous-time model in which the holding time before that
split is exponential with rate hm−1, the harmonic number. We (sharply) eval-
uate the first two moments of the time-height Dn and of the edge-height Ln

of a uniform random leaf (i.e., the length of the path from the root to the
leaf), and prove the corresponding CLTs. We study the correlation between
the heights of two random leaves of the same tree realization, and analyze the
expected number of splits necessary for a set of t leaves to partially or com-
pletely break away from each other. We give tail bounds for the time-height
and the edge-height of the tree, that is, the maximal leaf heights. We show
that there is a limit distribution for the size of a uniform random subtree, and
derive the asymptotics of the mean size. Our proofs are based on asymptotic
analysis of the attendant (sum-type) recurrences. The essential idea is to re-
place such a recursive equality by a pair of recursive inequalities for which
matching asymptotic solutions can be found, allowing one to bound, both
ways, the elusive explicit solution of the recursive equality. This reliance on
recursive inequalities necessitates usage of Laplace transforms rather than
Fourier characteristic functions.

1. Introduction. The topic of this paper is a certain random tree model, described below,
introduced and discussed briefly in 1996 in [3] but not subsequently studied. There is a slight
“applied” motivation as a toy model of phylogenetic trees (see Section 1.3), but our purpose
here is to commence a theoretical study of the model. A key point is that it has qualitatively
different properties from those of the well-studied random tree models that can be found in
(for instance) [7, 12].

One fundamental question about a random tree concerns the height of leaves. It turns out
that this question, and many extensions, can be answered extremely sharply via an analysis
of recursions, and this paper gives a thorough and detailed account of the range of questions
that can be answered by this methodology.

In addressing the Applied Probability community, let us observe that there are also other
questions about the model that can be studied via a wide range of general modern probability
techniques. Some such work in progress is briefly described in a final Section 3, and a current
overview can be found in the preprint [4].

1.1. The model. For m ≥ 2, consider the distribution (q(m, i),1 ≤ i ≤ m − 1) con-
structed to be proportional to 1

i(m−i)
. Explicitly (by writing 1

i(m−i)
= (1

i
+ 1

m−i
)/m)

(1) q(m, i) = m

2hm−1
· 1

i(m − i)
, 1 ≤ i ≤ m − 1,
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FIG. 1. The discrete time construction for n = 20. In the tree, by edges we mean the n − 1 vertical edges. The
leaves have edge-heights from 2 to 9.

where hm−1 is the harmonic sum
∑︁m−1

i=1 1/i. Now fix n ≥ 2. Consider the process of con-
structing a random tree by recursively splitting the integer interval [n] = {1,2, . . . , n} of
“leaves” as follows. First, specify that there is a left edge and a right edge at the root, leading
to a left subtree which will have the Ln leaves {1, . . . ,Ln} and a right subtree which will
have the Rn = n − Ln leaves {Ln + 1, . . . , n}, where Ln (and also Rn, by symmetry) has
distribution q(n, ·). Recursively, a subinterval with m ≥ 2 leaves is split into two subinter-
vals of random size from the distribution q(m, ·). Continue until reaching intervals of size 1,
which are the leaves. This process has a natural tree structure, illustrated schematically1 in
Figure 1. In this discrete-time construction we regard the edges of the tree as having length 1.
It turns out (see Section 1.3) to be convenient to consider the continuous-time construction in
which a size-m interval is split at rate hm−1, that is, after an exponential(hm−1) holding time.
Once constructed, it is natural to identify “time” with “distance”: a leaf that appears at time
t has time-height t . Of course the discrete-time model is implicit within the continuous-time
model, and a leaf which appears after ℓ splits has edge-height ℓ.

We call the continuous-time model the critical beta-splitting random tree, but must em-
phasize that the word critical does not have its usual meaning within branching processes.
Instead, among the one-parameter family of splitting probabilities with

(2) q(m, i) ∝ iβ(m − i)β, −2 < β < ∞
our parameter value β = −1 is critical in the sense that leaf-heights change from order n−β−1

to order logn at that value, as noted many years ago when this family was introduced [3].
Finally, our results do not use the leaf-labels {1,2, . . . , n} in the interval-splitting con-

struction. Instead they involve a uniform random leaf. Equivalently, one could take a uniform
random permutation of labels and then talk about the leaf with some arbitrary label.

1.2. Outline of results. Our main focus is on two related random variables associated
with the continuous-time random tree on n leaves:

• Dn = time-height of a uniform random leaf;
• Ln = edge-height of a uniform random leaf.

We start with sharp asymptotic formulas for the moments of Dn and Ln. They are of con-
siderable interest in their own right, and also because the techniques are then extended for

1Actual simulations appear in [4].
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analysis of the limiting distributions, with the moments estimates enabling us to guess what
those distributions should be.

Write ζ(·) for the Riemann zeta-function, ζ(r) := ∑︁∞
j=1

1
jr , (r > 1). Note that ζ(2) =

π2/6 and that ζ−1(2) below means 1/ζ(2), not the inverse function. Write γ for the Euler–
Masceroni constant, which will appear frequently in our analysis:

∑︁n
j=1

1
j

= logn + γ +
O(n−1). Asymptotics are as n → ∞.

THEOREM 1.1.

E[Dn] = ζ−1(2) logn + O(1),

var(Dn) = (︁
1 + o(1)

)︁2ζ(3)

ζ 3(2)
logn,

and, contingent on a numerically supported “h-ansatz” (see Section 2.2),

E[Dn] = ζ−1(2) logn + c0 − 1

2ζ(2)
n−1 + O

(︁
n−2)︁

for a constant c0 estimated numerically, and

var(Dn) = 2ζ(3)

ζ 3(2)
logn + O(1).

THEOREM 1.2.

E[Ln] = 1

2ζ(2)
log2 n + γ ζ(2) + ζ(3)

ζ 2(2)
logn + O(1),

var(Ln) = 2ζ(3)

3ζ 3(2)
log3 n + O

(︁
log2 n

)︁
.

The various parts of Theorem 1.1 are proved in Sections 2.1–2.4 and 2.7, and Theorem 1.2
is proved in Section 2.8. These theorems immediately yield the WLLNs (weak laws of large
numbers) for Dn and Ln, with rates, as follows.

COROLLARY 1.3. In probability

P

(︃⃓⃓⃓⃓
Dn

E[Dn] − 1
⃓⃓⃓⃓
≥ ε

)︃
,P

(︃⃓⃓⃓⃓
Ln

E[Ln] − 1
⃓⃓⃓⃓
≥ ε

)︃
= O

(︁
ε−2 log−1 n

)︁
.

Consider next the time-height Dn and the edge-height Ln of the random tree itself, that
is, the largest time length and the largest edge length of a path from the root to a leaf. By
upper-bounding the Laplace transforms of Dn and Ln, we prove in Sections 2.6 and 2.9

THEOREM 1.4. There exists ρ > 0 such that for all ε ∈ (0,1) we have

P
(︁
Dn ≥ (2 + ε) logn

)︁ ≤ 1

nρε
,

THEOREM 1.5. Let β = minα>1/ log 2[α + 4α2ζ(3)
α log 2−1 ] ≈ 42.9. For ε ∈ (0,1),

P
(︁
Ln ≥ (1 + ε)β log2 n

)︁
) ≤ exp

(︁−Θ(ε logn)
)︁
.
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We conjecture that both Dn

logn
and Ln

log2 n
converge, in probability, to constants.

The definitions of Dn and Ln involve two levels of randomness, the random tree and the
random leaf within the tree. To study the interaction between levels, it is natural to consider
the correlation between the heights of two leaves within the same realization of the random
tree. Write D

(1)
n and D

(2)
n for the time-heights of two distinct leaves chosen uniformly from

all pairs of leaves. We study the correlation coefficient defined by

rn = E[D(1)
n D

(2)
n ] −E

2[Dn]
Var(Dn)

,

and prove in Section 2.5

THEOREM 1.6. Contingent on the h-ansatz, rn = O(log−1 n), that is, asymptotically
D

(1)
n and D

(2)
n are uncorrelated.

We conjecture that a similar result holds for the correlation coefficient of L
(1)
n and L

(2)
n ,

the edge-heights of two distinct, uniformly random leaves, independently of the h-ansatz.
Returning to properties of Dn and Ln, in Sections 2.7 and 2.10 we will prove the CLTs

corresponding to the means and variances in Theorems 1.1 and 1.2.

THEOREM 1.7. In distribution, and with all their moments,

Dn − ζ−1(2) logn√︃
2ζ(3)

ζ 3(2)
logn

,
Ln − (2ζ(2))−1 log2 n√︃

2ζ(3)

3ζ 3(2)
log3 n

=⇒ Normal(0,1).

The sharp asymptotic estimates of the moments of Dn and Ln, and the ample numeric
evidence in the case of Dn, provided a compelling evidence that both Dn and Ln must be
asymptotically normal. However, the proof of Theorem 1.7 does not use these estimates,
providing instead an alternative verification of the leading terms in those estimates, without
relying on the h-ansatz.

After posting the original preprint version of this article, alternative proofs of these CLTs
have appeared in preprints. Via a martingale CLT [4] (continuous model); via the contraction
method [13] (discrete model); and via the theory of regenerative composition structures [11]
(discrete model). Presumably these methods can also be applied to the alternate model. Of
course, in Theorem 1.7 there is presumably joint convergence to a bivariate Gaussian limit. It
would be interesting to see which method would be best for proving such joint convergence.

Like Theorems 1.4 and 1.5, the proof of Theorem 1.7 is based on showing conver-
gence of the Laplace transform for the (properly centered and scaled) leaf height to that
of Normal(0,1). Why Laplace, but not Fourier? Because, even though there is enough inde-
pendence to optimistically expect asymptotic normality, our variables are too far from being
the sums of essentially independent terms. So, the best we could do is to use recurrences to
bound the (real-valued) Laplace transforms recursively both ways, by those of the Normals,
whose parameters we choose to satisfy, asymptotically, the respective recursive inequalities.
The added feature here is that we get convergence of the moments as well.

Leaving Laplace versus Fourier issue aside, there are many cases when a limited moment
information and the recursive nature of the process can be used to establish asymptotic nor-
mality, but the standard techniques hardly apply; see [8, 15, 17–20]. The concrete details
vary substantially, of course. For instance, in [19] it was shown that the total number of linear
extensions of the random, tree-induced, partial order is lognormal, by showing convergence
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FIG. 2. The left and center diagrams show t = 6 leaves ◦ in the n = 20-leaf tree in Figure 1. The right diagram
is the pruned spanning tree on those leaves, with 8 edges.

of all semi-invariants, rather than of the Laplace transforms. In [20], for the proof of a two-
dimensional CLT for the number of vertices and arcs in the giant strong component of the
random digraph, boundedness of the Fourier transform made it indispensable. The unifying
feature of these diverse arguments is the recurrence equation for the chosen transform.

The structure theory studied in [4] involves the notion of pruned spanning tree, illustrated
in Figure 2, and here we study its edge-length. Given a set T of t := |T | < n leaves of the tree
on n leaves, there is spanning tree on those leaves and the root; the edges of the spanning tree
are the union of the edges on the paths to these leaves. Now we can “prune” this spanning
tree by cutting the end segment of each path back to the internal vertex v where it branches
from the other paths; the spanning tree on those branchpoints v forms the pruned spanning
tree. Equivalently, the edges of the pruned spanning tree are the edges in the paths from the
root to vertices v such that each of the two subtrees rooted at v’s children has at least one
leaf from T . Write S∗

n,t for the number of such edges, when T is a uniform random choice of
t < n leaves. In Section 2.11 we prove the following theorem.

THEOREM 1.8. With B(t1, t2) = Γ(t1)Γ(t2)
Γ(t)

, we have

E
[︁
S∗

n,t

]︁ = α(t) logn + O(1), α(t) =
(︃
ht−1 − ∑︂

t1+t2=t

B(t1, t2)

)︃−1
,

along with a related result (Proposition 2.14) for the edge-height of the first branch-point
in the pruned tree. At long last, the Riemann zeta-function has suddenly loosened its grip,
and appropriately the beta-function has taken the stage.

Finally in Section 2.12 we prove

THEOREM 1.9. Let un := {un(t)}t≤n be the distribution of the number of leaves in a sub-
tree rooted at a uniform random vertex, that is, one of the 2n− 1 leaves or branchpoints. The
sequence {un}n≥1 converges to a proper distribution u. However

∑︁
t≥1 tun(t) ∼ 3

2π2 log2 n.

1.3. Motivation and background. The one-parameter family at (2) was introduced in [3]
in 1996 as a toy model for phylogenetic trees. It was observed in [5] that, in splits m →
(i,m − i) in real-world phylogenetic trees, the median size of the smaller subtree scaled
roughly as m1/2. This data is not consistent with more classical random tree models, where
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the median size would be O(logm) or Θ(m). However, in the “critical” case β = −1 of the
model studied in this paper, that median size is indeed order m1/2, because

2
∑︂

i<m1/2

q(m, i) → 1

2
as m → ∞.

Of course the model is not a biologically meaningful “forwards in time” model, but is a math-
ematically basic model that could be used for comparison with more realistic models [14] that
are deliberately constructed in the mathematical biology literature to reproduce features of
real phylogenetic trees. The distributional results of this model might therefore be useful for
some future “applied” project of that kind.

2. The proofs. Let τν be the holding time before a split of a subset of size ν. So τν has
exponential distribution with rate hν−1. By the definition of the splitting process, for ν ≥ 2
we have, with q(ν, i) = ν

2hν−1

1
i(ν−i)

as at (1),

Dν =
⎧⎪⎨⎪⎩

τν + Di, with probability q(ν, i)
i

ν
, i = 1, . . . , ν − 1,

τν + Dν−i , with probability q(ν, i)
ν − i

ν
, i = 1, . . . , ν − 1.

Introduce φν(u) = E[euDν ], the Laplace transform of the distribution of Dν ; so, φ1(u) = 1.
The equation above implies that for ν ≥ 2,

(3)

φν(u) =
ν−1∑︂
k=1

q(ν, k)

(︃
k

ν
E

[︁
exp

(︁
u(τν + Dk)

)︁]︁ + ν − k

ν
E

[︁
exp

(︁
u(τν + Dν−k)

)︁]︁)︃

= 2E
[︁
exp(uτν)

]︁ ν−1∑︂
k=1

k

ν
φk(u)qν,k = 1

hν−1 − u

ν−1∑︂
k=1

φk(u)

ν − k
.

Furthermore, introduce fν(u) = E[euLν ], the Laplace transform of the distribution of Lν ; so
f1(u) = 1. In this case we have, for ν ≥ 2,

Lν =
⎧⎪⎨⎪⎩

1 + Li, with probability q(ν, i)
i

ν
, i = 1, . . . , ν − 1,

1 + Lν−i , with probability q(ν, i)
ν − i

ν
, i = 1, . . . , ν − 1.

Therefore,

(4)

fν(u) =
ν−1∑︂
k=1

q(ν, k)

(︃
k

ν
E

[︁
exp

(︁
u(1 + Lk)

)︁]︁ + ν − k

ν
E

[︁
exp

(︁
u(1 + Lν−k)

)︁]︁)︃

= 2eu
ν−1∑︂
k=1

k

ν
fk(u)qν,k = eu

hν−1

ν−1∑︂
k=1

fk(u)

ν − k
.

In particular, we make extensive use of the following fundamental recurrence for E[Dν]:

(5) E[Dν] = 1

hν−1

(︄
1 +

ν−1∑︂
k=1

E[Dk]
ν − k

)︄
.

This follows directly from the hold-jump construction of the random tree, or by differentiating
both sides of (3) at u = 0.
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2.1. The moments of Dn. Our first result includes one part of Theorem 1.1.

PROPOSITION 2.1.

ζ−1(2) logn ≤ E[Dn] ≤ max
{︁
0,1 + log(n − 1)

}︁
, n ≥ 2,

E[Dn] = ζ−1(2) logn + O(1).

PROOF. The proof has three steps.
(i) Let us prove that E[Dn] ≥ 6

π2 logn. Introduce θn = A logn. Then E[D1] = 0 = θ1. If
we find A such that

(6) θn ≤ 1

hn−1

(︄
1 +

n−1∑︂
k=1

θk

n − k

)︄
, n ≥ 2,

then, by induction on n, E[Dn] ≥ θn for all n ≥ 1. We compute

1

hn−1

(︄
1 +

n−1∑︂
k=1

θk

n − k

)︄
= 1

hn−1

(︄
1 +

n−1∑︂
k=1

A log k

n − k

)︄

= 1

hn−1

(︄
1 + A(logn)hn−1 + A

n−1∑︂
k=1

log(k/n)

n(1 − k/n)

)︄

= θn + 1

hn−1

(︄
1 + A

n−1∑︂
k=1

log(k/n)

n(1 − k/n)

)︄

≥ θn + 1

hn−1

(︃
1 − A

∫︂ 1

0

log(1/x)

1 − x
dx

)︃
.

The inequality holds since the integrand is positive and decreasing. Since∫︂ 1

0

log(1/x)

1 − x
dx = ∑︂

j≥0

∫︂ 1

0
xj log(1/x) dx = ∑︂

j≥0

1

(j + 1)2 = ζ(2) = π2

6
,

we deduce that (6) holds if we select A = 6
π2 = ζ−1(2).

NOTE. The proof above is the harbinger of things to come, including the next part. The
seemingly naive idea is to replace a recurrence equality by a recurrence inequality for which
an exact solution can be found and then to use it to upper bound the otherwise-unattainable
solution of the recurrence equality. Needless to say, it is critically important to have a good
guess as to how that “hidden” solution behaves asymptotically.

(ii) Let us prove that E[Dn] ≤ f (n) := max{0,1 + log(n − 1)} for n ≥ 2. This is true for
n = 1,2 since E[D1] = 0, E[D2] = 1. Notice that 1 + log(x − 1) ≤ x − 1 for x ∈ (1,2]. So
f (x) ≤ g(x), ∀x > 1, where g(x) = x − 1 for x ∈ [1,2], g(x) = 1 + log(x − 1) for x ≥ 2,
and g(x) is concave for x ≥ 1. So, similar to (6), it is enough to show that g(n) satisfies

(7) g(n) ≥ 1

hn−1

(︄
1 +

n−1∑︂
i=1

g(i)

n − i

)︄
, n ≥ 2.

By concavity of g(x) for x ≥ 1, we have

1

hn−1

(︄
1 +

n−1∑︂
i=1

g(i)

n − i

)︄
≤ 1

hn−1
+ g

(︄
n−1∑︂
i=1

i

n − i

)︄

= 1

hn−1
+ g

(︃
n − n − 1

hn−1

)︃
≤ 1

hn−1
+ g(n) − g′(n)

(︃
n − 1

hn−1

)︃
,
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which is exactly g(n), since g′(n) = 1
n−1 for n > 1.

(iii) Write E[Dn] = 6
π2 logn+un, so that un ≥ 0 and u1 = 0. Let us prove that un = O(1).

Using (5) we have

(8)

un = 1

hn−1

(︄
1 +

n−1∑︂
k=1

uk

n − k

)︄
+ 6

π2

(︄
1

hn−1

n−1∑︂
k=1

log k

n − k
− logn

)︄

= 1

hn−1

(︄
1 +

n−1∑︂
k=1

uk

n − k

)︄
+ 6

π2hn−1

n−1∑︂
k=1

log(k/n)

n − k
.

The proof of (iii) depends on the following rather sharp asymptotic formula for the last sum,
which we believe to be new. We defer the proof of the lemma.

LEMMA 2.2.

n−1∑︂
k=1

log(k/n)

n − k
= −ζ(2) + log(2πe)

2n
+ logn

12n2 + O
(︁
n−2)︁

.

Granted this estimate, the recurrence (8) becomes

(9)

un = ζ−1(2)

hn−1

(︃
log(2πen)

2n
+ logn

12n2 + O
(︁
n−2)︁)︃

+ 1

hn−1

n−1∑︂
k=1

uk

n − k
, n ≥ 2, u1 = 0.

It is easy to check that the sequence xn := n−1
n

satisfies the recurrence

xn = 1

n
+ 1

hn−1

n−1∑︂
k=1

xk

n − k
, n ≥ 2, x1 = 0.

As the explicit term on the RHS of (9) is asymptotic to ζ−1(2)
2n

, we can deduce that un = O(1),
establishing (iii). Indeed, by the triangle inequality, the equation (9) implies that

|un| ≤ c

n
+ 1

hn−1

n−1∑︂
k=1

|uk|
n − k

.

By induction on n, this inequality coupled with the recurrence for xn imply that |un| ≤ 2cxn ≤
2c. □

Proof of Lemma 2.2. First, we have, for n ≥ 2

(10)

n−1∑︂
k=1

log(k/n)

n − k
=

n−1∑︂
k=1

(︃
log(k/n)

n
+ k log(k/n)

n(n − k)

)︃

= 1

n
log

(n − 1)!
nn−1 +

n−1∑︂
k=1

(k/n) log(k/n)

n − k
.

By Euler’s summation formula (Graham, Knuth, and Patashnik [10], (9.78)), if f (x) is a
smooth differentiable function for x ∈ [a, b] such that the even derivatives are all of the same



166 D. ALDOUS AND B. PITTEL

sign, then for every m ≥ 1,

(11)

∑︂
a≤k<b

f (k) =
∫︂ b

a
f (x) dx − 1

2
f (x)

⃓⃓⃓⃓b
a

+
m∑︂

ℓ=1

B2ℓ

(2ℓ)!f
(2ℓ−1)(x)

⃓⃓⃓⃓b
a

+ θm

B2m+2

(2m + 2)!f
(2m+1)(x)

⃓⃓⃓⃓b
a

.

Here θm ∈ (0,1) and {B2ℓ} are even Bernoulli numbers, defined by z
ez−1 = ∑︁

μ≥0 Bμ
zμ

μ! . The
equation (11) was used in [10] to show that

∑︂
1≤k<n

log k = n logn − n + 1

2
log

2π

n
+

m∑︂
ℓ=1

B2ℓ

2ℓ(2ℓ − 1)n2ℓ−1

+ θm,n

B2m+2

(2m + 2)(2m + 1)n2m+1 ,

θm,n ∈ (0,1). Here f (x) = logx, so that f (2ℓ)(x) < 0 for x ≥ 1 and ℓ ≥ 1. Using this estimate
for m = 1, we obtain a sharp version of Stirling’s formula:

(12)
1

n
log

(n − 1)!
nn−1 = −1 + log(2πn)

2n
+ O

(︁
n−2)︁

.

Consider the sum in the bottom RHS of (10). This time, take f (x) = (x/n) log(x/n)
n−x

, x ∈
[1, n − 1], and f (n) := − 1

n
. Let us show that f (2ℓ)(x) > 0 for x ∈ (0, n), or equivalently that

g(2ℓ)(y) > 0 for y ∈ (0,1), where g(y) := y logy
1−y

. We have

g(y) = − logy + logy

1 − y
= − logy − ∑︂

j≥1

(1 − y)j−1

j

= − log(1 − z) − ∑︂
j≥1

zj−1

j
, z := 1 − y.

So, we need to show that

(︁− log(1 − z)
)︁(2ℓ) ≥

(︃∑︂
j≥1

zj−1

j

)︃(2ℓ)

,

or equivalently that

(2ℓ − 1)!
(1 − z)2ℓ

≥ ∑︂
j>2ℓ

(j − 1)2ℓz
j−1−2ℓ

j
.

This inequality will follow if we prove a stronger inequality,2 namely that, for every ν ≥ 0,

[︁
zν]︁(2ℓ − 1)!

(1 − z)2ℓ
≥ [︁

zν]︁ ∑︂
j>2ℓ

(j − 1)2ℓz
j−1−2ℓ

j
.

But this is equivalent to

(2ℓ + ν − 1)! ≥ (2ℓ + ν)!
2ℓ + ν + 1

,

2[zν ] denotes the coefficient of zν .
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which is obviously true. Therefore, applying (11), we have, with θ ′
m,n ∈ (0,1),

(13)

n−1∑︂
k=1

(k/n) log(k/n)

n − k
=

∫︂ 1

1/n
g(y) dy − 1

2n
g(y)

⃓⃓⃓⃓1
1/n

+
m∑︂

ℓ=1

B2ℓ

n2ℓ(2ℓ)!g
(2ℓ−1)(y)

⃓⃓⃓⃓1
1/n

+ θ ′
m,n

B2m+2

n2m+2(2m + 2)!g
(2m+1)(y)

⃓⃓⃓⃓1
1/n

.

For the first terms in (13)∫︂ 1

1/n
g(y) dy =

∫︂ 1

0

y logy

1 − y
dy − ∑︂

j≥1

∫︂ 1/n

0
yj logy dy

= −ζ(2) + 1 + (logn)
∑︂
j≥2

n−j j−1 + ∑︂
j≥2

n−j j−2;

g(y)|11/n = −1 + logn

n − 1
.

The integrals were evaluated using the more general identities (23) and (24) later.
For the next term in (13) we need g(2ℓ−1)(y)|11/n. We use the Newton–Leibniz formula and

evaluate g(2ℓ−1)(1/n) and g(2ℓ−1)(1) using respectively

g(2ℓ−1)(y) =
2ℓ−1∑︂
j=0

(︃
2ℓ − 1

j

)︃
(logy)(j)

(︃
y

1 − y

)︃(2ℓ−1−j)

,

g(2ℓ−1)(y) =
2ℓ−1∑︂
j=0

(︃
2ℓ − 1

j

)︃
y(j)

(︃
logy

1 − y

)︃(2ℓ−1−j)

.

In the second sum there are only two nonzero terms, for j = 0 and j = 1, and using logy
1−y

=
−∑︁

j≥1
(1−y)j−1

j
we obtain, with some work, that

g(2ℓ−1)(1) = −(2ℓ − 2)!
2ℓ

.

For g(2ℓ−1)(1/n), we use (
y

1−y
)(μ) = ( 1

1−y
)(μ) for μ > 0, and after some more protracted

work we obtain

g(2ℓ−1)(1/n) = −(logn)
(2ℓ − 1)!

(1 − n−1)2ℓ
+

2ℓ−2∑︂
j=1

nj · (2ℓ − 1)j

j (1 − n−1)2ℓ−j
+ n2ℓ−2 · (2ℓ − 2)!

1 − 1/n
.

Therefore,

g(2ℓ−1)(y)|11/n = −(2ℓ − 2)!
2ℓ

+ (logn)
(2ℓ − 1)!

(1 − n−1)2ℓ

−
2ℓ−2∑︂
j=1

nj · (2ℓ − 1)j

j (1 − n−1)2ℓ−j
− n2ℓ−2 · (2ℓ − 2)!

1 − 1/n
.
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This term enters the RHS of (13) with the factor n−2ℓ, making the product of order n−2

regardless of m ≥ 1. And the remainder term in (13) is of order n−2, again independently of
m ≥ 1. So we choose the simplest m = 1. Collecting all the pieces we transform (13) into

(14)
n−1∑︂
k=1

(k/n) log(k/n)

n − k
= −ζ(2) + 1 + 1

2n
+ logn

12n2 + O
(︁
n−2)︁

.

So, combining (10), (12), and (14), we have

n−1∑︂
k=1

log(k/n)

n − k
= −ζ(2) + log(2πe)

2n
+ logn

12n2 + O
(︁
n−2)︁

which is the assertion of Lemma 2.2.
This completes the proof of Proposition 2.1.

2.2. An ansatz for sharper results. Knowing that E[Dn] = ζ−1(2) logn+O(1), it seems
natural to seek more refined estimates by imagining that

E[Dn] = ζ−1(2) logn + ∑︂
j≥0

cjn
−j

almost satisfies the recurrence, and then calculating cj . Let us call this the h-ansatz, being
analogous to a known expansion for hn. So to use this ansatz we write

wn := ∑︂
j≥0

cjn
−j

and seek to identify the cj from the recurrence (9), which we rewrite as follows:

(15)

wn = d1 logn

nhn−1
+ d2

nhn−1
+ 1

hn−1

n−1∑︂
k=2

wk

n − k
, n ≥ 2,

d1 = ζ−1(2)

2
, d2 = ζ−1(2)

2
log(2πe).

Here
logn

hn−1
= 1 − γ

logn
+ O

(︁
log−2 n

)︁
,

where

(16) γ := 1 −
∞∑︂

j=2

ζ(j) − 1

j
≈ 0.5772156649,

is the Euler–Masceroni constant coming from hν = logν + γ + O(ν−1), [10]. For n ≥ 3,
using 1

k(n−k)
= n−1(1

k
+ 1

n−k
), we have

n−1∑︂
k=2

wk

n − k
= ∑︂

j≥0

cj

n−1∑︂
k=2

1

kj (n − k)

= c0

(︃
hn−1 − 1

n − 1

)︃
+ c1n

−1
(︃

2hn−1 − n

n − 1

)︃

+ n−1
∑︂
j≥2

cj

n−1∑︂
k=2

(︃
1

kj
+ 1

kj−1(n − k)

)︃
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= c0

(︃
hn−1 − 1

n − 1

)︃
+ c1n

−1
(︃

2hn−1 − n

n − 1

)︃
+ n−1

∑︂
j≥2

cj

(︁
ζ(j) − 1

)︁ + O
(︁
n−2 logn

)︁
.

Therefore,

d1 logn

nhn−1
+ d2

nhn−1
+ 1

hn−1

n−1∑︂
k=2

wk

n − k
− wn

= d1 + c1

n
+ 1

nhn−1

(︃
−d1γ + d2 − c0 − c1 + ∑︂

j≥2

cj

(︁
ζ(j) − 1

)︁)︃ + O
(︁
n−2)︁

.

So, selecting

(17) c1 = −d1 = − 3

π2 , c0 = d2 + ∑︂
j≥2

(︃
cj + d1

j

)︃(︁
ζ(j) − 1

)︁
,

(as suggested by (16)) we have

d1 logn

nhn−1
+ d2

nhn−1
+ 1

hn−1

n−1∑︂
k=2

wk

n − k
− wn = O

(︁
n−2)︁

.

Therefore, wn = ∑︁
j≥0 cjn

−j satisfies (9) within the additive error O(n−2), provided that
{cj }j≥0 satisfies (17). It is worth noticing that c0 is well defined for every {cj }j≥2 pro-
vided that the series in (17) converges. The constant c0 can be viewed as a counterpart of
the Euler–Masceroni constant γ . Strikingly, c0 depends on all cj , j ≥ 2, while c1 is deter-
mined uniquely from the requirement that wn satisfies (15) within O(n−2) error.

So the conclusion is as follows.

PROPOSITION 2.3. Assuming the h-ansatz, there exists a constant c0 such that

(18) E[Dn] = 6

π2 logn + c0 − 3

π2 n−1 + O
(︁
n−2)︁

.

This is another part of Theorem 1.1. One can calculate E[Dn] numerically via the ba-
sic recurrence, and doing so up to n = 400,000 gives a good fit3 to (18) with c0 =
0.7951556604..... We do not have a conjecture for the explicit value of c0.

In what follows, we will use only a weak corollary of (18), namely

(19) E[Dn] = 6

π2 logn + c0 + O
(︁
n−1)︁

.

Paradoxically, the actual value of c0 will be immaterial as well.

2.3. The recursion for variance. Parallel to the recursion (5) for expectations, here is the
recursion for variance.

LEMMA 2.4. Setting vn := var(Dn), we have

(20) vn = 1

hn−1

n−1∑︂
k=1

vk + (E[Dn] −E[Dk])2

n − k
.

3Taking the coefficient of n−1 as unknown, the fit to this data is 0.30408, compared to 3
π2 = 0.30396.
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PROOF. Differentiating twice both sides of (3) at u = 0, we get

E
[︁
D2

n

]︁ = 2

h3
n−1

· hn−1 + 2

h2
n−1

n−1∑︂
k=1

E[Dk]
n − k

+ 1

hn−1

n−1∑︂
k=1

E[D2
k ]

n − i

= 2

h2
n−1

(︄
1 +

n−1∑︂
k=1

E[Dk]
n − k

)︄
+ 1

hn−1

n−1∑︂
k=1

E[D2
k ]

n − k

= 2E[Dn]
hn−1

+ 1

hn−1

n−1∑︂
k=1

E[D2
k ]

n − k
.

Since vn = E[D2
n] −E

2[Dn], the equation above becomes

vn = 2E[Dn]
hn−1

+ 1

hn−1

n−1∑︂
k=1

vk +E
2[Dk]

n − k
−E

2[Dn].

The identity (20) holds because, by (5),

2E[Dn]
hn−1

+ 1

hn−1

n−1∑︂
k=1

E
2[Dk]
n − k

−E
2[Dn] = 1

hn−1

n−1∑︂
k=1

(E[Dn] −E[Dk])2

n − k
.

□

NOTE. The equation (46) could be obtained by using the “law of total variance”. We
preferred the above derivation as more direct in the present context, inconceivable without
Laplace transform. Besides, the similar argument will be used later to derive a recurrence for
variance of the edge length of the random path. It will be almost the “same” as (20), but with
an unexpected, if not shocking, additive term −1 on the RHS.

2.4. Sharp estimates of var(Dn). Assuming the h-ansatz, and using (20), we are able to
obtain the following sharp estimate, asserted as part of Theorem 1.1.

PROPOSITION 2.5. Contingent on the h-ansatz,

vn = 2ζ(3)

ζ 3(2)
logn + O(1). n ≥ 2.

NOTE. It is the term (E[Dn] − E[Dk])2 in (20) that necessitates our reliance on the h-
ansatz. Comfortingly, the first-order result var(Dn) ∼ 2ζ(3)

ζ 3(2)
logn follows from the CLT proof

in Section 2.7, independently of the h-ansatz.

PROOF. By (19), we have(︁
E[Dn] −E[Dk])︁2 = ζ−2(2)

(︁
log(n/k) + O

(︁
k−1)︁)︁2

(21)
= ζ−2(2)

(︁
log2(n/k) + O

(︁
k−1 log(n/k)

)︁ + O
(︁
k−2)︁)︁

.

We need the estimates
n−1∑︂
k=1

log(n/k)

k(n − k)
= n−1

n−1∑︂
k=1

(︁
k−1 + (n − k)−1)︁

log(n/k) = O
(︁
n−1 log2 n

)︁
,

n−1∑︂
k=1

1

k2(n − k)
= n−1

n−1∑︂
k=1

(︁
k−2 + n−1(︁

k−1 + (n − k)−1)︁)︁ = O
(︁
n−1)︁

.
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Consider the dominant term in (21). Observe that the function log2(n/x)
n−x

is convex. So, using
(11) for m = 0, we obtain

n−1∑︂
k=1

log2(n/k)

n − k
=

∫︂ n

1

log2(n/x)

n − x
dx + O

(︁
n−1 log2 n

)︁

=
∫︂ 1

0

log2(1/x)

1 − x
dx + O

(︁
n−1 log2 n

)︁
(22)

= 2ζ(3) + O
(︁
n−1 log2 n

)︁
.

To explain the final equality, by induction on r and integrating by parts, we obtain

(23)
∫︂ 1

0
zj logr z dz = (−1)r

r!
(j + 1)r+1 .

Consequently

(24)
∫︂ 1

0

logr z

1 − z
dz =

∫︂ 1

0

(︁
logr z

)︁ ∑︂
j≥0

zj dz = (−1)rr!ζ(r + 1), r ≥ 1

used for r = 2 at (22). Now the recursion in Lemma 2.4 becomes

vn = 1

hn−1

(︄
2ζ(3)

ζ 2(2)
+ O

(︁
n−1 log2 n

)︁ +
n−1∑︂
k=1

vk

n − k

)︄
.

Recalling that

E[Dn] = 1

hn−1

(︄
1 +

n−1∑︂
k=1

E[Dk]
n − k

)︄
,

it follows that wn := |vn − 2ζ(3)

ζ 2(2)
E[Dn]| satisfies

(25) wn ≤ 1

hn−1

(︄
cn−1 log2 n +

n−1∑︂
k=1

wk

n − k

)︄
, n ≥ 2,w1 = 0,

for some constant c > 0. Let us prove that the sequence

zn := c

(︃
log2(14) − log2(14n)

n

)︃
satisfies

(26) zn ≥ 1

hn−1

(︄
cn−1 log2 n +

n−1∑︂
k=1

zk

n − k

)︄
, n ≥ 2.

Because z1 = 0 = w1, we will get then, predictably by induction using (25), that wn ≤ zn.

Let us prove (26). For g(x) := − log2(14x)
x

, we have

g′(x) = x−2(︁
log2(14x) − 2 log(14x)

)︁
,

g′′(x) = − 2

x3

[︁
log2(14x) − 3 log(14x) + 1

]︁
< 0, x ≥ 1,
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because log(14) > 2.63 > 3+√
5

2 , the larger of two roots of x2 − 3x + 1. Therefore, g(x) is
concave on [1,∞). So,

1

hn−1

n−1∑︂
k=1

g(k)

n − k
≤ g

(︄
1

hn−1

n−1∑︂
k=1

k

n − k

)︄
= g

(︃
n − n − 1

hn−1

)︃

≤ g(n) − g′(n)
n − 1

hn−1

= g(n) − n−2(︁
log2(14n) − 2 log(14n)

)︁n − 1

hn−1
.

Since zk = c(log2(14) + g(k)), we obtain then

1

hn−1

(︄
c log2 n

n
+

n−1∑︂
k=1

zk

n − k

)︄

≤ zn + c

hn−1

[︃
log2 n

n
− n−2(n − 1)

(︁
log2(14n) − 2 log(14n)

)︁]︃
< zn,

because the expression within square brackets is easily shown to be negative for n ≥ 2. This
establishes (26). □

2.5. How correlated are leaf-heights? Recall the statement of Theorem 1.6, copied be-
low as Theorem 2.6. To study the interaction between the two levels of randomness, it is natu-
ral to consider the correlation between leaf heights. Write D

(1)
n and D

(2)
n for the time-heights,

within the same realization of the random tree, of two distinct leaves chosen uniformly over
pairs of leaves. Both time-heights individually are distributed as Dn, the time height of the
uniformly random leaf. We study the correlation coefficient defined by

rn = E[D(1)
n D

(2)
n ] −E

2[Dn]
Var(Dn)

.

THEOREM 2.6. Contingent on the h-ansatz, rn = O(log−1 n).

PROOF. Recall the splitting distribution n → (Ln,Rn) at (1):

(27) P(Ln = i) = q(n, i) = n

2hn−1

1

i(n − i)
= q(n,n − i), 1 ≤ i ≤ n − 1.

There is a natural recursion for Zν := D
(1)
ν · D(2)

ν , as follows:

(28) Zν
d=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(︁
τν + D

(1)
i

)︁(︁
τν + D

(2)
i

)︁
, with probability q(ν, i) · (i)2

(ν)2
,(︁

τν + D
(1)
ν−i

)︁(︁
τν + D

(2)
ν−i

)︁
, with probability q(ν, i) · (ν − i)2

(ν)2
,(︁

τν + D
(1)
i

)︁(︁
τν + D

(2)
ν−i

)︁
, with probability q(ν, i) · i(ν − i)

(ν)2
,(︁

τν + D
(2)
i

)︁(︁
τν + D

(1)
ν−i

)︁
, with probability q(ν, i) · i(ν − i)

(ν)2
.

Here τν is the exponential(hν−1) hold time. The first two cases correspond to the two leaves
being in the same subtree, so their heights are dependent, whereas the last two cases corre-
spond to the two leaves being in the different subtrees, so their heights are (conditionally)
independent.
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Consequently

E[Zν |Lν = i] =
(︃

2

h2
ν−1

+ 2

hν−1
E[Di] +E[Zi]

)︃
(i)2

(ν)2

+
(︃

2

h2
ν−1

+ 2

hν−1
E[Dν−i] +E[Zν−i]

)︃
(ν − i)2

(ν)2

+ 2
(︃

2

h2
ν−1

+ 1

hν−1

(︁
E[Di] +E[Dν−i])︁ +E[Di] ·E[Dν−i]

)︃
i(ν − i)

(ν)2
,

or, with a bit of algebra,

E[Zν |Lν = i] = 2

h2
ν−1

+ 2iE[Di]
νhν−1

+ 2(ν − i)E[Dν−i]
νhν−1

+ 1

(ν)2

(︁
(i)2 E[Zi] + (ν − i)2 E[Zν−i] + 2i(ν − i)E[Di]E[Dν−i])︁.

Using (27) we obtain then

E[Zν] =
ν−1∑︂
i=1

q(ν, i)E[Zν |Lν = i]

= 2

h2
ν−1

+ 2

h2
ν−1

ν−1∑︂
i=1

E[Di]
ν − i

+ 1

(ν − 1)hν−1

ν−1∑︂
i=1

E[Di]E[Dν−i] + 1

(ν − 1)hν−1

ν−1∑︂
i=1

(i − 1)E[Zi]
ν − i

.

So, using E[Dν] = 1
hν−1

(1 + ∑︁ν−1
i=1

E[Di ]
ν−i

), we arrive at

(29)

E[Zν] = 1

(ν − 1)hν−1

ν−1∑︂
i=1

(i − 1)E[Zi]
ν − i

+ 2E[Dν]
hν−1

+ 1

(ν − 1)hν−1

ν−1∑︂
i=1

E[Di]E[Dν−i].

We use (29) to sharply estimate E[Zν] and then estimate rn = E[Zν ]−E
2[Dn]

Var(Dn)
. To start,

2E[Dν]
hν−1

= 2ζ−1(2) + O
(︁
log−1 ν

)︁
.

Second,

E[Di]E[Dν−i] = [︁
ζ−1(2) log i + c0 + O

(︁
i−1)︁]︁

× [︁
ζ−1(2) log(ν − i) + c0 + O

(︁
(ν − i)−1)︁]︁

.

The leading contribution to
∑︁

i E[Di]E[Dν−i] comes from

ζ−2(2)

ν−1∑︂
i=1

log i · log(ν − i)

= ζ−2(2)(ν − 1) log2 ν + 2ζ−2(2) logν

ν−1∑︂
i=1

log(i/ν)
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+ ζ−2(2)

ν−1∑︂
i=1

log(i/ν) log
(︁
(ν − i)/ν

)︁
= ζ−2(2)ν log2 ν + 2ζ−2(2)ν logν

∫︂ 1

0
logx dx + O(ν)

= ζ−2(2)
(︁
ν log2 ν − 2ν logν

)︁ + O(ν).

The secondary contribution to
∑︁

i E[Di]E[Dν−i] comes from c0ζ
−1(2)(log i + log(ν − i)),

and it equals 2c0ζ
−1(2)ν logν +O(ν). The terms c0, O(i−1), O((ν − i)−1) contribute jointly

O(ν). Altogether,

ν−1∑︂
i=1

E[Di]E[Dν−i] = ζ−2(2)
(︁
ν log2 ν − 2ν logν

)︁ + 2c0ζ
−1(2)ν logν + O(ν).

Therefore, the equation (29) becomes

(30)
E[Zν] = 1

(ν − 1)hν−1

ν−1∑︂
i=1

(i − 1)E[Zi]
ν − i

+ 2ζ−1(2)

+ ζ−2(2)(logν − 2 − γ ) + 2c0ζ
−1(2) + O

(︁
log−1 ν

)︁
.

Let us look at an approximate solution ˜︁E(ν) := A log2 ν + B logν. The RHS of the above
equation is

1

(ν − 1)hν−1

ν−1∑︂
i=1

(i − 1)(A log2 i + B log i)

ν − i
+ 2ζ−1(2)

+ ζ−2(2)(log ν − 2 − γ ) + 2c0ζ
−1(2) + O

(︁
log−1 ν

)︁
.

Here, since
∑︁

i
i−1
ν−i

= (ν − 1)(hν−1 − 1), we have

1

(ν − 1)hν−1

ν−1∑︂
i=1

(i − 1) log2 i

ν − i
= 1

(ν − 1)hν−1

ν−1∑︂
i=1

(i − 1)(log(i/ν) + logν)2

ν − i

= hν−1 − 1

hν−1
log2 ν + 2 logν

(ν − 1)hν−1

ν−1∑︂
i=1

(i − 1) log(i/ν)

ν − i

+ 1

(ν − 1)hν−1

ν−1∑︂
i=1

(i − 1) log2(i/ν)

ν − i

= log2 ν − logν + γ + 2
∫︂ 1

0

x logx

1 − x
dx + O

(︁
log−1 ν

)︁
= log2 ν − logν + γ + 2

(︁
1 − ζ(2)

)︁ + O
(︁
log−1 ν

)︁
,

and

1

(ν − 1)hν−1

ν−1∑︂
i=1

(i − 1) log i

ν − i
= logν − 1 + O

(︁
log−1 ν

)︁
.

Therefore, with ˜︁E(·) instead of E[Z·], the RHS of the equation (30) becomes

A
(︁
log2 ν − logν + γ + 2

(︁
1 − ζ(2)

)︁)︁ + B(logν − 1)

+ ζ−2(2)(logν − 2 − γ ) + 2(c0 + 1)ζ−1(2) + O
(︁
log−1 ν

)︁
.
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And we need this to be equal to ˜︁E(ν) := A log2 ν + B logν within an additive error
O(log−1 ν), meaning that

−A + B + ζ−2(2) = B,

A
[︁
γ + 2

(︁
1 − ζ(2)

)︁]︁ − B − (2 + γ )ζ−2(2) + 2(c0 + 1)ζ−1(2) = 0,

or explicitly

(31) A = ζ−2(2), B = 2c0ζ
−1(2).

With these A and B , our approximation ˜︁E(ν) satisfies the same equation (30) as E[Zν],
excluding an exact value of the remainder term O(log−1 ν), of course. Consequently, Δ(ν) :=
|E[Zν] − ˜︁E(ν)| satisfies

(32) Δ(ν) ≤ 1

(ν − 1)hν−1

ν−1∑︂
i=1

(i − 1)Δ(i)

ν − i
+ O

(︁
log−1 ν

)︁
, Δ(1) = 0.

With Uν := (ν − 1)Δ(ν), the resulting equation is a special case of the later equation (65)
with the remainder term O(νt−1 log−1 ν), when t = 2. Applying the bound for the solution
proved there, we obtain that Uν = O(ν), or that Δ(ν) = O(1). Thus

E[Zν] = A log2 ν + B logν + O(1).

Combining this formula with (31), rn = E[Zν ]−E
2[Dn]

Var(Dn)
and E[Dn] = ζ−1(2) logn + c0 +

O(n−1), we compute

rn = ζ−2(2) log2 n + 2c0ζ
−1(2) logn − (ζ−1(2) logn + c0)

2 + O(1)

2ζ(3)

ζ 3(2)
logn + O(1)

= O
(︁
log−1 n

)︁
.

□

NOTE. We do not need the h-ansatz in the rest of the paper.

2.6. Bounding the time-height of the random tree. Consider now the time-height Dn of
the random tree itself, that is, the maximum leaf time-height. We re-state Theorem 1.4, to-
gether with a tail bound on Dn.

PROPOSITION 2.7. (i) For some ρ > 0 and all ε ∈ (0, π2/6 − 1),

P

(︃
Dn ≥ 6

π2 (1 + ε) logn

)︃
= O

(︁
n−ρε)︁.

(ii) For some ρ′ and all ε ∈ (0,1),

P
(︁
Dn ≥ 2(1 + ε) logn

)︁ = O
(︁
n−ρ′ε)︁.

PROOF. (i) Since the tree with ν leaves has ν − 1 nonleaf vertices, rather crudely Dν is
stochastically dominated by the sum of ν−1 independent exponentials with rate 1. Therefore,
for u < 1, the Laplace transform φν(u) := E[euDν ] is bounded above by (1 − u)−ν . Recall
(3):

φν(u) = 1

hν−1 − u

ν−1∑︂
k=1

φk(u)

ν − k
, ν ≥ 2.

Pick ε′ < ε and introduce α = 6
π2 (1+ ε′) (so α < 1) and ψν(u) = exp(uα logν). Let us prove

that

(33) ψν(u) ≥ 1

hν−1 − u

ν−1∑︂
k=1

ψk(u)

ν − k
,

if u ∈ (0,1) is sufficiently small, and ν > 1 sufficiently large.
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First note that

ψk(u) = ψν(u) exp
(︁
uα log(k/ν)

)︁
, k ≤ ν.

Therefore,

1

ψν(u)(hν−1 − u)

ν−1∑︂
k=1

ψk(u)

ν − k
= 1

hν−1 − u

ν−1∑︂
k=1

exp(uα log(k/ν))

ν − k

=
(︃

1 − u

hν−1

)︃−1
·
(︄

1 + 1

hν−1

ν−1∑︂
k=1

exp(uα log(k/ν)) − 1

ν − k

)︄

=
(︃

1 + u

hν−1
+ O

(︃
u2

h2
ν−1

)︃)︃

×
[︄

1 + u

hν−1

ν−1∑︂
k=1

α log(k/ν)

ν − k
+ O

(︄
u2

hν−1

ν−1∑︂
k=1

log2(k/ν)

ν − k

)︄]︄
;

(where we used |ex − 1 − x| ≤ x2/2, for x ≤ 0). So, since α = ζ−1(2)(1 + ε′),

1

ψν(u)(hν−1 − u)

ν−1∑︂
k=1

ψk(u)

ν − k
= 1 + u

hν−1

(︄
1 + α

ν−1∑︂
k=1

log(k/ν)

ν − k

)︄
+ O

(︃
u2

hν−1

)︃

≤ 1 + u

hν−1

(︃
1 + α

(︃
−ζ(2) + log(νe)

ν − 1

)︃
+ O

(︃
u2

hν−1

)︃)︃
(34)

= 1 − u

hν−1

(︃
ε′ − ζ−1(2)(1 + ε)

log(νe)

ν − 1

)︃
+ O

(︃
u2

hν−1

)︃
.

To justify the inequality above: logx
1−x

increases for x ≤ 1, so that

ν−1∑︂
k=1

log(k/ν)

ν − k
≤

∫︂ 1

0

logx

1 − x
dx −

∫︂ 1/ν

0

logx

1 − x
dx

≤ −ζ(2) + ν

ν − 1

∫︂ 1/ν

0
log(1/x) dx = −ζ(2) + log(νe)

ν − 1
.

The big-O term is uniform over all u ∈ (0,1) and ν > 1. It follows then from (34) that
there exist u(ε′) ∈ (0,1) and ν(ε′) > 1 such that (33) holds for u ∈ (0, u(ε′)) and ν ≥ ν(ε′).
Furthermore, for u ∈ (0, u(ε′)) and ν ≤ ν(ε′),

φν(u)

ψν(u)
≤ A

(︁
ε′)︁ := (1 − u(ε′))−ν(ε′)

exp(u(ε′)α log(ν(ε′))
,

since, for α ≤ 1, (1−u)−ν

exp(uα logν)
attains its maximum on [0, ν(ε′)] at ν(ε′). Combining this in-

equality with (33), by induction on ν we obtain that φν(u) ≤ A(ε′)ψν(u) for all ν > 1 and
u ≤ u′ := u(ε′). The rest is easy:

P

(︃
Dn ≥ 6

π2 (1 + ε) logn

)︃
≤ E[exp(u′Dn)]

exp(u′ 6
π2 (1 + ε) logn)

≤ A(ε′)ψν(u
′)

exp(u′ 6
π2 (1 + ε) logn)

≤ A
(︁
ε′)︁ exp

[︃
u′

(︃
α − 6

π2 (1 + ε)

)︃
logn

]︃
= A(ε′)

n
6u′
π2 (ε−ε′)

.
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(ii) Predictably, we will use the union bound, which makes it necessary to upper-bound
P(Dn ≥ 2(1 + ε) logn). To this end, we use a cruder version of the argument in the part (i).
Set α = 1 + ε/2 and choose u = 1

α
. Denoting zν = u/hν−1 we bound

1

ψν(u)(hν−1 − u)

ν−1∑︂
k=1

ψk(u)

ν − k
= 1

hν−1 − u

ν−1∑︂
k=1

exp(uα log(k/ν))

ν − k

= hν−1

hν−1 − u
· 1

hν−1

ν−1∑︂
k=1

k/ν

ν − k
= hν−1

hν−1 − u
·
(︃

1 − ν − 1

νhν−1

)︃uα

≤ exp
(︃
− log(1 − zν) − zν

α(ν − 1)

ν

)︃
.

Since zν → 0, the last expression is below 1 for ν ∈ [ν(α), n]. Therefore, arguing closely to
the part (i), we see that φn(u) = O(ψn(u)). Consequently

P
(︁
Dn ≥ 2(1 + ε) logn

)︁ = O

(︃
ψn(u)

exp(2u(1 + ε) logn)

)︃
= O

(︁
n

− 2(1+ε)
1+ε/2 +1)︁

,

implying, by the union bound, that

P
(︁
Dn ≥ 2(1 + ε) logn

)︁ ≤ nP
(︁
Dn ≥ 2(1 + ε) logn

)︁ = O
(︁
n

− 2(1+ε)
1+ε/2 +2)︁ = O

(︁
n

− ε
1+ε/2

)︁
. □

2.7. Asymptotic normality of Dn. Here is one part of Theorem 1.7.

PROPOSITION 2.8. In distribution, and with all of its moments,

Dn − ζ−1(2) logn√︃
2ζ(3)

ζ 3(2)
logn

=⇒ Normal(0,1).

In particular, this provides a proof of the first-order result

var(Dn) ∼ 2ζ(3)

ζ 3(2)
logn,

without having to rely on the h-ansatz, as stated in Theorem 1.1.

PROOF. By a general theorem due to Curtis [6], it suffices to show that for |u| =
Θ(log−1/2 n) and properly chosen α1, α2 > 0, the Laplace transform φn(u) = E[euDn] sat-
isfies

(35) φn(u) = (︁
1 + o(1)

)︁
exp

[︁(︁
uα1 + u2α2

)︁
logn

]︁
.

Recall from (3) that

(36) φν(u) = 1

hν−1 − u

ν−1∑︂
k=1

φk(u)

ν − k
, ν ≥ 2.

Define a function

Ψν(u) = exp
[︁(︁

uα1 + u2α2
)︁

logν
]︁
, ν ∈ [1, n];

obviously Ψ1(u) = 1 = φ1(u). We will use induction on ν to prove a stronger result, namely
that there exist α1 and α2 such that for |u| = Θ(log−1/2 n), the ratio φν(u)

Ψν(u)
converges to 1,
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uniformly over n ≥ ν → ∞, sufficiently fast. Pick δ ∈ (0,1/6), and set νn = ⌈exp(logδ n)⌉,
so in particular u logνn → 0. Introduce Ψ∗

ν (u) := 1 + uα logν. For u > 0, we have

1

(hν−1 − u)Ψ∗
ν (u)

ν−1∑︂
k=1

Ψ∗
k (u)

ν − k

= 1

hν−1

∑︂
j1,j2≥0

uj1+j2

(︃
1

hν−1

)︃j1

(−α logν)j2

×
(︄
(1 + uα logν)hν−1 + uα

ν−1∑︂
k=1

log(k/ν)

ν − k

)︄

=
(︃

1 + u

(︃
1

hν−1
− α logν

)︃
+ O

(︁
α2u2 log2 ν

)︁)︃ ·
(︃

1 + uα logν − u

hν−1
Θ(α)

)︃
= 1 + u

hν−1

(︁
1 − Θ(α)

)︁ + O
(︁(︁

α2 + 1
)︁
u2 log2 ν

)︁
{︄
> 1, if ν ≤ νn,α > 0 and small,

< 1, if ν ≤ νn,α > 0 and large.

(37)

(For the bottom part we used δ < 1
6 .) And the inequalities are interchanged if u < 0. Combin-

ing this with (36), we conclude that φν(u) = 1 +O(|u| logν) = exp(O(|u| logν)), uniformly
for ν ≤ νn. So, for bounded α1, α2,

(38) lim
n→∞ max

ν≤νn

⃓⃓⃓⃓
φν(u)

Ψν(u)
− 1

⃓⃓⃓⃓
= 0.

Thus, we need to prove existence of α1, α2 such that the property above holds for ν ≥ νn,
as well. To this end, let us determine α1 and α2 from the condition that Ψν(u), (ν ∈ [νn, n]),
satisfies the recursive inequality

(39) Ψν(u) ≥ (≤)
1

hν−1 − u

(︄
ν−1∑︂
k=1

Ψk(u)

ν − k

)︄
, ν ∈ [νn, n].

First of all, we have

Ψk(u) = Ψν(u) exp
[︁(︁

uα1 + u2α2
)︁

log(k/ν)
]︁
, k ≤ ν.

Therefore,

(40)

1

Ψν(u)(hν−1 − u)

ν−1∑︂
k=1

Ψk(u)

ν − k

= 1

hν−1 − u

ν−1∑︂
k=1

exp[(uα1 + u2α2) log(k/ν)]
ν − k

=
(︃

1 − u

hν−1

)︃−1
·
(︄

1 + 1

hν−1

ν−1∑︂
k=1

exp[(uα1 + u2α2) log(k/ν)] − 1

ν − k

)︄

=
(︃

1 − u

hν−1

)︃−1

·
(︃

1 + 1

hν−1

∫︂ 1

0

exp[(uα1 + u2α2) logx] − 1

1 − x
dx + O

(︃ |u| logνn

νn

)︃)︃
.



BETA-SPLITTING RANDOM TREE 179

In the final line, the bottom integral does not depend on ν. Let us first justify the remainder
term. Define f (k/ν) as the kth term in the previous sum, (k < ν), and, for continuity, set
f (ν/ν) = −ν−1(uα1 + u2α2). It can be checked that f ′′

k (k/ν) does not change its sign on
[1, ν]. So, replacing the sum with the integral for k varying continuously from 1 to ν, we
introduce the error on the order of the sum of absolute values of

f (k/ν)|ν1 and f ′
k(k/ν)|ν1.

The dominant contribution to each of these terms comes from k = 1. Since for σ ∈ (0,1) the
function zσ −1

z
decreases for z ≥ σ−1 log 1

1−σ
, we bound

⃓⃓
f (1/ν)

⃓⃓ ≤ exp(|uα1 + u2α2| logνn) − 1

νn

= O
(︁
ν−1
n |u| logνn

)︁
.

And the bound for |f ′
k(1/ν)| is even better. So the sum in question is of order O(

|u| logνn

νn
)

uniformly for ν ≥ νn. Extending the resulting integral to the full [0, ν], we introduce the
second error on the order of

(41)
∫︂ 1

0

exp[(uα1 + u2α2) log(k/ν)] − 1

ν − k
dk = O

(︃ |u| logνn

νn

)︃
.

The sum of the two error terms is O(ν−1|u| logν), and dividing it by hν−1 we get O(
|u|
νn

).
Let us sharply estimate the bottom integral in (40). By (41), the contribution to this integral

coming from x ∈ (0,1/νn] is O(ν−1
n |u| logνn). And for x ∈ [1/νn,1], we have |u| log(1/x) ≤

|u| logνn → 0, that is, we can use the Taylor expansion

exp[(uα1 + u2α2) logx] − 1

1 − x
= (uα1 + u2α2) logx

1 − x
+ (uα1 + u2α2)

2 log2 x

2(1 − x)

+ O

(︃ |u|3 log3(1/x)

1 − x

)︃
.

This means that, at the price of the error term of the order ν−1
n |u| logνn + |u|3 ∫︁ 1

0
log3(1/x)

1−x
dx,

we can use the expansion above for all x ∈ (0,1].
So, using (24), we obtain

1

hν−1

∫︂ 1

0

exp[(uα1 + u2α2) logx] − 1

1 − x
dx

= −α1ζ(2)u

hν−1
+ u2

hν−1

[︁
α2

1ζ(3) − α2ζ(2)
]︁ + O

(︃ |u|3
hν−1

+ ν−1
n |u|

)︃
.

Consequently, for ν ≥ νn(= ⌈exp(logδ n)⌉),
1

Ψν(u)(hν−1 − u)

ν−1∑︂
k=1

Ψk(u)

ν − k
= 1 + u

hν−1

(︁
1 − α1ζ(2)

)︁

+ u2

hν−1

[︁
α2

1ζ(3) − α2ζ(2)
]︁ + O

(︃ |u|3
hν−1

+ |u|
νn

)︃
(42)

= 1 + u

hν−1

(︁
1 − α1ζ(2)

)︁ + O

(︃ |u|3
hν−1

)︃
,

if we select α2 = α2
1ζ(3)

ζ(2)
, which we certainly do. Suppose u > 0; set α1 = ζ−1(2) + ub, b ∈

(1,2). Then, uniformly for ν ∈ [νn, n], we have

1 + u

hν−1

(︁
1 − α1ζ(2)

)︁ + O

(︃ |u|3
hν−1

)︃
= 1 − ζ−1(2)ub+1

hν−1

(︁
1 + O

(︁
u2−b)︁)︁

< 1.
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So, (42) becomes

1

hν−1 − u

ν−1∑︂
k=1

Ψk(u)

ν − k
≤ Ψν(u).

This equation and the equation (36) together imply, by induction on ν ∈ [νn, n], that
lim supn→∞ maxν∈[νn,n] φν(u)

Ψν(u)
≤ 1. Now,

Ψν(u) = exp
[︁(︁

uα1 + u2α2
)︁

logν
]︁

= exp
[︃(︃

uζ−1(2) + u2 ζ(3)

ζ 3(2)

)︃
logν + O

(︁
ub+1 logν

)︁]︃

∼ exp
[︃(︃

uζ−1(2) + u2 ζ(3)

ζ 3(2)

)︃
logν

]︃
,

since ub+1 logn = O(log− b−1
2 n) and b > 1. Therefore,

lim sup
n→∞

max
ν∈[νn,n]

φν(u)

Ψν(u)
≤ 1.

Analogously, setting α1 = ζ−1(2) − ub, we have

lim inf
n→∞ min

ν∈[νn,n]
φν(u)

Ψν(u)
≥ 1.

So, for u = Θ(log−1/2 n) > 0 we have

lim
n→∞

φn(u)

exp[(uζ−1(2) + u2 ζ(3)

ζ 3(2)
) logn] = 1.

The case u < 0 is completely similar, so that the last equation holds for u = −Θ(log−1/2 n) <

0 as well. □

2.8. The moments of edge-heights of the leaves. Recall that Ln denotes the edge-height
of a uniform random leaf. In this section we prove Theorem 1.2 via the two propositions
below.

PROPOSITION 2.9.

(43) E[Ln] = 1

2ζ(2)
log2 n + γ ζ(2) + ζ(3)

ζ 2(2)
logn + O(1).

PROOF. The straightforward recurrence for E[Lν] is

(44) E[Lν] = 1 + 1

hν−1

ν−1∑︂
k=1

E[Lk]
ν − k

.

Write E[Lν] = A log2 ν + B logν + uν , so that u1 = 0. We need to show that uν = O(1),
if we select A and B appropriately. (Sure enough, these will be the constants in the claim.)
Using (44), we have

uν = 1 + 1

hν−1

∑︂
k∈[ν−1]

uk

ν − k
+ A

(︃
1

hν−1

∑︂
k∈[ν−1]

log2 k

ν − k
− log2 ν

)︃
(45)

+ B

(︃
1

hν−1

∑︂
k∈[ν−1]

logk

ν − k
− logν

)︃
.
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Here, by (14),

1

hν−1

∑︂
k∈[ν−1]

logk

ν − k
− logν = 1

hν−1

∑︂
k∈[ν−1]

log(k/ν)

ν − k
= − ζ(2)

hν−1
+ log(2πe)

νhν−1
+ O

(︁
ν−2)︁

,

and, combining the equation above with (22), we also have

1

hν−1

∑︂
k∈[ν−1]

log2 k

ν − k
− log2 ν

= 1

hν−1

∑︂
k∈[ν−1]

log(k/ν) · (log(k/ν) + 2 logν)

ν − k

= 2ζ(3)

hν−1
+ O

(︁
ν−1 logν

)︁ + 2
(︃
−ζ(2) logν

hν−1
+ log(2πe) logν

νhν−1
+ O

(︁
ν−2 logν

)︁)︃
.

Plugging the estimates above into (45) and using logν = hν−1 − γ + O(ν−1), we get

uν = 1

hν−1

∑︂
k∈[ν−1]

uk

ν − k
+ (︁

1 − 2Aζ(2)
)︁ + 1

hν−1

[︁
2A

(︁
γ ζ(2) + ζ(3)

)︁ − Bζ(2)
]︁

+ O
(︁
ν−1 logν

)︁
.

So, selecting A and B such that the (A,B)-dependent coefficients are both zeros, that is,
A = 1

2ζ(2)
, B = γ ζ(2)+ζ(3)

ζ(2)
, we arrive at

uν = 1

hν−1

(︃ ∑︂
k∈[ν−1]

uk

ν − k
+ O

(︁
ν−1 log2 ν

)︁)︃
.

From the proof of Proposition 2.5 (starting with (25)), it follows that uν = O(1). □

PROPOSITION 2.10. var(Ln) = 2ζ(3)

3ζ 3(2)
log3 n + O(log2 n).

PROOF. (i) The key is

LEMMA 2.11. Setting v̄n := var(Ln), we have

(46) v̄n = −1 + 1

hn−1

n−1∑︂
k=1

v̄k + (E[Ln] −E[Lk])2

n − k
.

NOTE. In particular, v̄2 = 0 as it should be, since L2 ≡ 1, unlike D2 which is distributed
exponentially with rate 1.

PROOF. Differentiating twice both sides of (4) at u = 0, we get

E
[︁
L2

ν

]︁ = 1 + 1

hν−1

∑︂
k∈[ν−1]

E[L2
k]

ν − k
+ 2

hν−1

∑︂
k∈[ν−1]

E[Lk]
ν − k

= 2E[Lν] − 1 + 1

hn−1

n−1∑︂
k=1

E[L2
k]

n − k

= 2E[Lν] − 1 + 1

hν−1

ν−1∑︂
k=1

E
2[Lk]
ν − k

+ 1

hν−1

ν−1∑︂
k=1

v̄k

ν − k
.
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Since v̄ν = E[L2
ν] −E

2[Lν], the equation above becomes

v̄ν = 2E[Lν] − 1 + 1

hn−1

ν−1∑︂
k=1

v̄k +E
2[Lk]

ν − k
−E

2[Lν],

and it is easy to check that this equation is equivalent to the claim. □

(ii) Using Proposition 2.9, we compute, for A = 1
2ζ(2)

, B = γ ζ(2)+ζ(3)
ζ(2)

,(︁
E[Lν] −E[Lk])︁2 = (︁

A
(︁
log2 ν − log2 k

)︁ + B(logν − log k) + O(1)
)︁2

= [︁
2A

(︁
log(k/ν)

)︁
logν

]︁2 + O
[︁
P

(︁
log(ν/k)

)︁
logν

]︁
,

where P(η) is a fourth-degree polynomial. Therefore, invoking (22), we have

1

hν−1

ν−1∑︂
k=1

(E[Lν] −E[Lk])2

ν − k
= 4A2 log2 ν

hν−1

ν−1∑︂
k=1

log2(k/ν)

ν − k
+ O(1)

= 8A2ζ(3) log2 ν

hν−1
+ O(1) = 8A2ζ(3) logν + O(1).

So, since A = 1
2ζ(2)

, the equation (46) becomes

(47) v̄ν = 2ζ(3)

ζ(2)2 logν + O(1) + 1

hν−1

ν−1∑︂
k=1

v̄k

ν − k
.

Let us use this recurrence to show that, for appropriately chosen A∗,

v̄ν = Vν + O
(︁
log2 ν

)︁
, Vν := A∗ log3 ν.

Here O(log2 ν) is uniform over all ν ≥ 2. We compute

1

hν−1

ν−1∑︂
k=1

log3 k

ν − k
= 1

hν−1

ν−1∑︂
k=1

(logν + log(k/ν))3

ν − k

= 1

hν−1

(︄
log3 νhν−1 + 3 log2 ν

ν−1∑︂
k=1

log(k/ν)

ν − k

+ 3 logν

ν−1∑︂
k=1

log2(k/ν)

ν − k
+

ν−1∑︂
k=1

log3(k/ν)

ν − k

)︄

= log3 ν + 3 log2 ν

hν−1

ν−1∑︂
k=1

log(k/ν)

ν − k
+ O(1)

= log3 ν − 3ζ(2) log ν + O(1).

It follows that

2ζ(3)

ζ(2)2 logν + 1

hν−1

ν−1∑︂
k=1

Vk

ν − k

= Vν +
(︃

2ζ(3)

ζ(2)2 − 3A∗ζ(2)

)︃
logν + O(1) = Vν + O(1),
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if we select A∗ = 2ζ(3)

3ζ 3(2)
. Combining this equation with (47), we obtain that Wν := v̄ν − Vν

satisfies

Wν = O(1) + 1

hν−1

ν−1∑︂
k=1

Wk

ν − k
.

Comparing with (44), we see that Wν = O(E[Lν]) = O(log2 ν). □

2.9. Bounding the edge-height of the random tree. As with the time-height in Section 2.6,
we use a tail bound on the edge-height of a random leaf to obtain a tail bound for the edge-
height of the tree itself.

PROPOSITION 2.12. Let Ln denote the edge-height of the uniformly random leaf, and let
Ln denote the largest edge-height of a leaf.

(1) For ε > 0,

P

(︃
Ln ≥ 3

π2 (1 + ε) log2 n

)︃
= O

(︁
n−Θ(ε))︁.

(2) Let β = minα>1/ log 2[α + 4α2ζ(3)
α log 2−1 ] ≈ 42.9. For ε ∈ (0,1),

P
(︁
Ln ≥ (1 + ε)β log2 n

)︁
) ≤ exp

(︁−Θ(ε logn)
)︁
.

PROOF. (1) First of all, fν(u) := E[euLν ] ≤ eu(ν−1) for u ≥ 0. By (4), we have

fν(u) := E
[︁
euLν

]︁ = eu

hν−1

ν−1∑︂
k=1

fk(u)

ν − k
, ν ∈ [2, n].

Consider u = v
logn

, and introduce gk(u) = exp(uα log2 k), α > 0 yet to be determined. Let
us prove that there exists v = v(α) sufficiently small, and ν(α) sufficiently large such that

(48) gν(u) ≥ eu

hν−1

ν−1∑︂
k=1

gk(u)

ν − k
, ∀ν ∈ [︁

ν(a), n
]︁
.

We compute

1

gν(u)hν−1

ν−1∑︂
k=1

gk(u)

ν − k
= 1

hν−1

ν−1∑︂
k=1

exp[uα(log2 k − log2 ν)]
ν − k

= 1 + 1

hν−1

ν−1∑︂
k=1

exp[uα(log2 k − log2 ν)] − 1

ν − k
(49)

≤ 1 + uα

hν−1

ν−1∑︂
k=1

log2 k − log2 ν

ν − k
+ O

(︄
u2 logν

ν−1∑︂
k=1

log2(k/ν)

ν − k

)︄
.

The big-Oh term is O(u2 logν), and

ν−1∑︂
k=1

log2 k − log2 ν

ν − k
=

ν−1∑︂
k=1

log2(k/ν)

ν − k
+ 2 logν

ν−1∑︂
k=1

log(k/ν)

ν − k
= −π2

3
logν + O(1).

Therefore,

1

gν(u)hν−1

ν−1∑︂
k=1

gk(u)

ν − k
≤ 1 − αuπ2

3
+ O

(︁
u log−1 ν + u2 logν

)︁
,
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implying that

(50)
eu

gν(u)hν−1

ν−1∑︂
k=1

gk(u)

ν − k
≤ 1 − u

(︃
απ2

3
− 1

)︃
+ O

(︁
u log−1 ν + u2 logν

)︁
.

Recalling that u = v
logn

, we obtain that for α > 3
π2 there exists a sufficiently small v(α) > 0,

and a sufficiently large ν(α), such that for v ≤ v(α) and n ≥ ν ≥ ν(α), we have

(51)
eu

gν(u)hν−1

ν−1∑︂
k=1

gk(u)

ν − k
≤ 1.

Furthermore, for u ≤ v(α)
logn

and ν ≤ ν(α),

(52)
fν(u)

gν(u)
≤ exp(uν)

exp(uα log2 ν)
≤ exp

[︃
v(α)ν(α)

logn

]︃
.

By induction on ν ∈ [ν(a), n], it follows that for those ν’s

fν(u) ≤ exp
[︃
v(α)ν(α)

logn

]︃
gν(u) =⇒ fn(u) ≤ exp

[︃
v(α)ν(α)

logn

]︃
gn(u),

provided that α > 3
π2 , and u ≤ v(α)

logn
. So, given ε > 0, we set α = 3

π2 (1+ε/2), α′ = 3
π2 (1+ε),

and bound

P

(︃
Ln ≥ 3

π2 (1 + ε) log2 n

)︃
= O

(︃
exp(uα log2 n)

exp(uα′ log2 n)

)︃ ⃓⃓⃓⃓
u= v(α)

logn

= O
(︁
n−Θ(ε))︁.

This is the assertion of (1).
(2) We need a more explicit, but cruder, version of (50), again for u = O(log−1 n). Instead

of (49), we bound

1

gν(u)hν−1

ν−1∑︂
k=1

gk(u)

ν − k
≤ 1 + uα

hν−1

ν−1∑︂
k=1

log2 k − log2 ν

ν − k
+ 2α2u2 log2 ν

hν−1

ν−1∑︂
k=1

log2(k/ν)

ν − k
.

Here

1

hν−1

ν−1∑︂
k=1

log2 k − log2 ν

ν − k
= 1

hν−1

ν−1∑︂
k=1

log2(k/ν)

ν − k
+ 2 logν

hν−1

ν−1∑︂
k=1

log(k/ν)

ν − k

≤ 2ζ(3)

hν−1
+ 2 logν · log

(︃
1 − ν − 1

νhν−1

)︃

≤ ζ(3)

logν
− 2

(ν − 1) logν

hν−1ν
≤ 2ζ(3)

logν
− log 2,

since log2 x
1−x

is increasing, logx is concave, and log(1 + z) ≤ z, (z > −1). So, we replace (50)
with

(53)
eu

gν(u)hν−1

ν−1∑︂
k=1

gk(u)

ν − k
≤ 1 − u

(︃
α

(︃
log 2 − 2ζ(3)

logν

)︃
− 1

)︃
+ u2(︁

1 + 4α2ζ(3) logν
)︁
.

Given α > 0, the coefficient by u can be made arbitrarily close to α log 2−1 for ν sufficiently
large, thus positive if α > 1

log 2 . Assuming the latter, for those large ν’s, still below n, the RHS
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expression in (53) is below 1 if 0 < u ≤ α log 2−1
(4+δ)α2ζ(3) logn

, (δ > 0), and n ≥ n(δ). It follows that,

as n → ∞, we have fn(u) = O(gn(u)). Consequently, given α′ > α > 1
log 2 ,

(54)
P

(︁
Ln ≥ α′ log2 n

)︁ ≤ nP
(︁
Ln ≥ α′ log2 n

)︁ = O

(︃
n

eαu log2 n

eα′u log2 n

)︃
= O

(︁
exp

[︁
logn − u

(︁
α′ − α

)︁
log2 n

)︁]︁
) → 0,

if

u = α log 2 − 1

(4 + δ)α2ζ(3) logn
, α′ > α + (4 + δ)α2ζ(3)

α log 2 − 1
.

Set

β = min
α>1/ log 2

[︃
α + 4α2ζ(3)

α log 2 − 1

]︃
,

and let α̂ stand for the point where the minimum is attained. Given ε > 0, there exists δ =
δ(ε) = Θ(ε) such that

α′ := (1 + ε)β > α̂ + (4 + δ)α̂2ζ(3)

α̂ log 2 − 1
,

implying, by (54) with α = α̂, that P(Ln ≥ α′ log2 n) = O(exp(−Θ(ε) logn)). □

2.10. Asymptotic normality of Ln. Here is the second part of Theorem 1.7.

PROPOSITION 2.13. In distribution, and with all of its moments,

Ln − (2ζ(2))−1 log2 n√︃
2ζ(3)

3ζ 3(2)
log3 n

=⇒ Normal(0,1).

PROOF. Analogously to the proof of Proposition 2.8, it would seem natural to show that
for |u| = Θ(log−3/2 n) and properly chosen α1 > 0, α2 > 0, the Laplace transform fν(u) =
E[euLν ] satisfies

(55) fν(u) = (︁
1 + o(1)

)︁
gν(u), gν(u) := exp

(︁
uα1 log2 ν + u2α2 log3 ν

)︁
,

uniformly for ν ≤ n. But we could only prove (55) for 0 < u ≤ v log−3/2 n and a fixed v > 0.
Fortunately, that is all we need, thanks to a relatively recent extension of the Curtis lemma:
it suffices to prove convergence of the sequence of Laplace transforms for the parameter v

confined to a fixed interval (0, σ ]; see [16] or [21].
Recall

(56) fν(u) = eu

hν−1

ν−1∑︂
k=1

fk(u)

ν − k
, ν ≥ 2.

Pick δ ∈ (0,3/4) and set νn = ⌈exp(logδ n)⌉. For a constant α, introduce g∗
ν (u) :=

exp(uα log2 ν). For u > 0, we have

eu

hν−1g∗
ν (u)

ν−1∑︂
k=1

g∗
k (u)

ν − k

= eu

hν−1

ν−1∑︂
k=1

exp(uα log(kν) log(k/ν)

ν − k
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= eu

hν−1

ν−1∑︂
k=1

[︁
1 + uα log(kν) log(k/ν) + O

(︁
u2α2 logν log2(k/ν)

)︁]︁
(57)

= eu

[︄
1 + uαΘ(logν)

hν−1

ν−1∑︂
k=1

log(k/ν)

ν − k
+ O

(︄
u2α2 logν

ν−1∑︂
k=1

log2(k/ν)

ν − k

)︄]︄

= eu[︁
1 − uΘ(α) + O

(︁
u2α2 logν

)︁]︁ = 1 + u
(︁
1 − Θ(α)

)︁ + O
(︁
u2(︁

1 + α2 logν
)︁)︁

{︄
> 1, if ν ≤ νn,α > 0 and small,

< 1, if ν ≤ νn,α > 0 and large.

(For the second line we used ez = 1 + z + O(z2/2), uniformly for z < 0. For the bottom
line we used δ < 3

4 .) Combining this with (56), we conclude that fν(u) = exp(O(u log2 ν)),
uniformly for ν ≤ νn. So, for bounded α1, α2,

(58) lim
n→∞ max

ν≤νn

⃓⃓⃓⃓
fν(u)

gν(u)
− 1

⃓⃓⃓⃓
= 0.

Thus, we need to prove existence of α1, α2 such that the analogous relation holds uniformly
for all ν ∈ [νn, n]. Predictably, we select α1 and α2, requiring that gν(u) is the asymptotically
best fit for the recurrence (56) for all ν ∈ [νn, n]. To begin,

(59)

gk(u) = gν(u) exp
[︁
uα1G1(k/ν, ν) + u2α2G2(k/ν, ν)

]︁
,

G1(k/ν, ν) := log
(︃

k

ν

)︃
log(kν) ≤ 0,

G2(k/ν, ν) := log
(︃

k

ν

)︃[︃
3 log k logν + log2

(︃
k

ν

)︃]︃
≤ 0.

And, since Gj(k/ν, ν) are nonpositive, the Taylor expansion of the exponential function holds
for u > 0, even though |uG1(1/n,n)| = O(

√
logn). (Notice that u2|G2(1/ν, ν)| = O(1).)

So, proceeding analogously to (40),

eu

gν(u)hν−1

ν−1∑︂
k=1

gk(u)

ν − k

= eu

hν−1

ν−1∑︂
k=1

exp[uα1G1(k/ν, ν) + u2α2G2(k/ν, ν)]
ν − k

= eu ·
(︄

1 + 1

hν−1

ν−1∑︂
k=1

exp[uα1G1(k/ν, ν) + u2α2G2(k/ν, ν)] − 1

ν − k

)︄

= eu · (1 + 1

hν−1

∫︂ 1

0

exp[uα1G1(x, ν) + u2α2G2(x, ν)] − 1

1 − x
dx

+ O

(︃
exp(−u log2 ν)

ν logν

)︃
,

(60)

where uniformly for x ∈ (0,1]
exp[uα1G1(x, ν) + u2α2G2(x, ν)] − 1

1 − x
= uα1G1(x, ν) + u2α2G2(x, ν)

1 − x

+ (uα1G1(x, ν) + u2α2G2(x, ν))2

2(1 − x)
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+ O

(︃
u3 log3(1/x) log3 ν

1 − x

)︃
.

Using (59), and (24), we have then∫︂ 1

0

exp[uα1G1(x, ν) + u2α2G2(x, ν)] − 1

1 − x
dx

= α1u
(︁−2ζ(2) logν + 2ζ(3)

)︁ + u2
(︃

α2
1

2

(︁
8ζ(3) log2 ν − 24ζ(4) log ν

)︁
+ α2

(︁−3ζ(2) log2 ν + 6ζ(3) logν − 6ζ(4)
)︁)︃ + O

(︁
u3 log3 ν

)︁
.

Upon expansion eu = 1 + u + u2/2 + O(u3), the bottom RHS in (60) then becomes

(61)

1 + u

(︃
1 + α1

−2ζ(2) logν + 2ζ(3)

hν−1

)︃
+ u2

(︃ α2
1

2 (8ζ(3) log2 ν − 24ζ(4) logν)

hν−1

+ a2(−3ζ(2) log2 ν + 6ζ(3) logν − 6ζ(4))

hν−1
+ α1

−2ζ(2) logν + 2ζ(3)

hν−1

)︃
+ O

(︁
u3 log2 ν

)︁
= 1 + u

(︃
1 + α1

−2ζ(2) logν + 2ζ(3)

hν−1

)︃
+ O

(︁
u3 log2 ν

)︁
,

if, leaving α1 = α1(ν) > 0 to be determined shortly, we select α2 = α2(ν) to make the coeffi-
cient by u2 equal to zero. Looking closer at the coefficient by u2, we see that

α2 = 4α2
1ζ(3)

3ζ(2)
+ O

(︁
log−1 ν

)︁
.

The rest is short. Pick α1 = (2ζ(2))−1(1+ub), b < 2δ/3. Since u = Θ(log−3/2 n), the bottom
expression in (61) becomes

1 + u
(︁−ub + O

(︁
log−1 ν

)︁)︁ + O
(︁
u3 log2 ν

)︁
= 1 − ub+1(︁

1 + O
(︁
u−b log−1 ν

)︁ + O
(︁
u2−b log2 n

)︁)︁
= 1 − ub+1[︁

1 + O
(︁
(logn)−δ+3b/2)︁ + O

(︁
(logn)−1+3b/2)︁]︁

< 1.

So, it follows from (60) that

eu

hν−1

ν−1∑︂
k=1

gk(u)

ν − k
< gν(u), ν ∈ [νn, n].

Combining this recursive inequality with (58), we conclude that

lim sup
n→∞

max
ν∈[νn,n]

fν(u)

gν(u)
≤ 1.

Now,

gν(u) = exp
(︁
uα1 log2 ν + u2α2 log3 ν

)︁
= exp

[︃
u
(︁(︁

2ζ(2)
)︁−1(︁

1 + ub)︁)︁
log2 ν + u2

(︃
ζ(3)

3ζ 3(2)
+ o(1)

)︃
log3 ν

]︃

= exp
[︃
u
(︁
2ζ(2)

)︁−1 log2 ν + u2 ζ(3)

3ζ 3(2)
log3 ν + o(1) + O

(︁
ub+1 log2 ν

)︁]︃
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= (︁
1 + o(1)

)︁
exp

[︃
u
(︁
2ζ(2)

)︁−1 log2 ν + u2 ζ(3)

3ζ 3(2)
log3 ν

]︃
,

if we select b > 1/3. Since b < 2δ/3, a desired b exists provided that δ > 1/2, the constraint
compatible with the initial restriction δ < 3/4. We conclude that for δ ∈ (1/2,3/4)

lim sup
n→∞

max
ν∈[νn,n]fν(u) exp

[︃
−u

(︁
2ζ(2)

)︁−1 log2 ν − u2 ζ(3)

3ζ 3(2)
log3 ν

]︃
≤ 1.

Likewise, picking α1 = (2ζ(2))−1(1 − ub), b < 2δ/3, we obtain

lim inf
n→∞ min

ν∈[νn,n]fν(u) exp
[︃
−u

(︁
2ζ(2)

)︁−1 log2 ν − u2 ζ(3)

3ζ 3(2)
log3 ν

]︃
≥ 1.

This verifies (55), as required. □

2.11. How soon do the species part their ways? Recall from Section 1.2 the notion of
pruned spanning tree on t random leaves within the tree model on n leaves. Write Sn,t for the
edge height of the first branchpoint in the pruned tree. In other words, the number of edges
from the root to the vertex after which the t sampled leaves are first split into some (k, t − k)

leaf subsets. Conditioned on the size k of the left subtree at the root of the tree with n leaves,
the probability that the t sampled leaves are all in this left subtree is (k)t

(n)t
. Therefore, since

q(n, k) = n
2hn−1k(n−k)

, we obtain the recursion

(62) E[Sn,t ] = 1 + 1

hn−1

n−1∑︂
k=1

(n/k)E[Sk,t ]
n − k

(k)t

(n)t
, n ≥ t ≥ 2,

(E[Sk,1] = 0), or, introducing Φn,t = (n − 1)t−1 E[Sn,t ],

(63) Φn,t = (n − 1)t−1 + 1

hn−1

n−1∑︂
k=1

Φk,t

n − k
.

PROPOSITION 2.14.

E[Sn,t ] = logn

ht−1
+ O(1) as n → ∞.

PROOF. Given α > 0, define

Uν,t = Φν,t − ανt−1 logν.

Then, by (63), we have

(64) Uν,t = (ν − 1)t−1 + 1

hν−1

ν−1∑︂
k=1

Uk,t

ν − k
+ α

(︄
1

hν−1

ν−1∑︂
k=1

kt−1 logk

ν − k
− νt−1 logν

)︄
,

and the coefficient by α equals

νt−1

hν−1

ν−1∑︂
k=1

(k/ν)t−1[logν + log(k/ν)]
ν − k

− νt−1 logν

= νt−1

hν−1

(︄
logν

ν−1∑︂
k=1

(k/ν)t−1 − 1

ν − k
+ logν

ν−1∑︂
k=1

1

ν − k
+

ν−1∑︂
k=1

(k/ν)t−1 log(k/ν)

ν − k

)︄

− νt−1 logν
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= νt−1

hν−1

(︃
logν

∫︂ 1

0

xt−1 − 1

1 − x
dx + hν−1 logν + O(1)

)︃
− νt−1 logν

= −νt−1 logν

hν−1
ht−1 + O

(︁
νt−1 log−1 ν

)︁
.

So, the equation (64) becomes

Uν,t = (ν − 1)t−1 + α

(︃
−νt−1 logν

hν−1
ht−1 + O

(︁
νt−1 log−1 ν

)︁)︃ + 1

hν−1

ν−1∑︂
k=1

Uk,t

ν − k

(65)

= O
(︁
νt−1 log−1 ν

)︁ + 1

hν−1

ν−1∑︂
k=1

Uk,t

ν − k

if we choose α = 1
ht−1

. Consequently, for some constant β ,

|Uν,t | ≤ βνt−1 log−1 ν + 1

hν−1

ν−1∑︂
k=1

|Uk,t |
ν − k

.

For a constant B , to be chosen shortly, we have

βνt−1 log−1 ν + 1

hν−1

ν−1∑︂
k=1

Bkt−1

ν − k

= βνt−1 log−1 ν + Bνt−1

hν−1

ν−1∑︂
k=1

(k/ν)t−1

ν − k

= βνt−1 log−1 ν + Bνt−1

hν−1

(︃
hν−1 +

∫︂ 1

0

xt−1 − 1

1 − x
dx + O

(︁
ν−1)︁)︃

= βνt−1 log−1 ν + Bνt−1

hν−1

(︁
hν−1 − ht−1 + O

(︁
ν−1)︁)︁

< Bνt−1,

provided that

β log−1 ν − B

(︃
ht−1

hν−1
+ O

(︁
ν−1)︁)︃

< 0.

And this inequality holds for all ν ≥ 2, if we choose B sufficiently large. It follows, by
induction on ν, that |Uν,t | ≤ Bνt−1. Consequently

Φν,t = ανt−1 logν + O
(︁
νt−1)︁

,

so that

E[Sν,t ] = Φν,t

(ν − 1)t−1
= α logν + O(1), α = 1

ht−1
. □

Within the same notion of pruned spanning tree on t random leaves within the tree model
on n leaves, a more complicated statistic is the edge-length of the pruned tree, which we
denote as S∗

n,t . To derive the counterpart of (62), notice that the total number of ways to
partition the set [n] \ [t] into two trees, the left one of cardinality k, with t1 ≤ t vertices from
[t] and the right one of cardinality n − k, with t2 = t − t1 remaining vertices from [t], equals
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k−t1

)︁
. Defining S∗

n,0 = 0, S∗
n,1 = 0, ∀n ≥ 0, we have the recursion: for n ≥ t ≥ 2,

E
[︁
S∗

n,t

]︁ = 1 +
n−1∑︂
k=1

n

2hn−1k(n − k)
·
(︃
n

k

)︃−1

× ∑︂
t1≤t

(︃
n − t

k − t1

)︃(︁
E

[︁
S∗

k,t1

]︁ +E
[︁
S∗

n−k,t2

]︁)︁

= 1 +
n−1∑︂
k=1

n

2hn−1k(n − k)

∑︂
t1≤t

(k)t1(n − k)t2

(n)t

(︁
E

[︁
S∗

k,t1

]︁ +E
[︁
S∗

n−k,t2

]︁)︁

= 1 + 1

hn−1

n−1∑︂
k=2

t∑︂
t1=2

(k − 1)t1−1(n − k)t2

(n − 1)t−1(n − k)
E

[︁
S∗

k,t1

]︁
.

Therefore, with Ψn,t := (n − 1)t−1 E[S∗
n,t ], so that Ψn,0 = Ψn,1 = 0, Ψn,t = 0 for n < t , we

obtain

(66) Ψn,t = (n − 1)t−1 + 1

hn−1

t∑︂
t1=2

n−1∑︂
k=2

(n − k)t2

n − k
Ψk,t1, n ≥ t ≥ 2.

This equation is similar to (63). Because of the new factor (n − k)t2 , we will use

(67) (a)b =
b∑︂

j=1

s(b, j)aj ,

where s(b, j) is the signed Stirling number of the first kind, so that |s(b, j)| is the total
number of permutations of [b] with j cycles.

We now repeat the statement of Theorem 1.8.

PROPOSITION 2.15.

E
[︁
S∗

n,t

]︁ = α(t) logn + O(1), α(t) =
(︃
ht−1 − ∑︂

t1+t2=t

(t1 − 1)!(t2 − 1)!
(t − 1)!

)︃−1
.

PROOF. The argument is guided by the proof of Proposition 2.14. Given α > 0, define

Vν,t = Ψν,t − ανt−1 logν, ν ≥ t ≥ 2.

By (66), we have

Vν,t = (ν − 1)t−1 + 1

hn−1

t∑︂
t1=2

ν−1∑︂
k=2

(ν − k)t2

ν − k
Vk,t1

(68)

+ α

(︄
1

hν−1

t∑︂
t1=2

ν−1∑︂
k=2

(ν − k)t2

ν − k
kt1−1 log k − νt−1 logν

)︄
.

Consider the factor by α. By (67),

ν−1∑︂
k=2

(ν − k)t2

ν − k
kt1−1 log k =

t2∑︂
j=0

s(t2, j)Σ(ν, t1, j),

Σ(ν, t1, j) :=
ν−1∑︂
k=2

(ν − k)j−1kt1−1 log k.
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Recalling that t1 > 1, we write

Σ(ν, t1,0) =
ν−1∑︂
k=2

kt1−1 log k

ν − k
=

ν−1∑︂
k=2

kt1−1(logν + log(k/ν))

ν − k

= (logν)

(︄
νt1−1hν−1 +

ν−1∑︂
k=2

kt1−1 − νt1−1

ν − k

)︄
+

ν−1∑︂
k=2

kt1−1 log(k/ν)

ν − k
,

and

ν−1∑︂
k=2

kt1−1 − νt1−1

ν − k
= νt1−1

(︃∫︂ 1

0

xt1−1 − 1

1 − x
dx + O

(︁
ν−1)︁)︃

= νt1−1

(︄
−

∫︂ 1

0

t1−2∑︂
s=0

xs dx + O
(︁
ν−1)︁)︄

= −νt1−1ht1−1 + O
(︁
νt1−2)︁

,

while it is easy to see that
∑︁ν−1

k=2
kt1−1 log(k/ν)

ν−k
is of order νt1−1 ∫︁ 1

0
xt1−1 logx

1−x
dx = O(νt1−1).

Therefore,

(69) Σ(ν, t1,0) = (hν−1 − ht1−1)ν
t1−1 logν + O

(︁
νt1−1)︁

.

Suppose that j > 0. Then

Σ(ν, t1, j) = νt1+j−1

(︄
ν−1

ν−1∑︂
k=1

(1 − k/ν)j−1(k/ν)t1−1[︁
logν + log(k/ν)

]︁)︄

= νt1+j−1
[︃
(logν)

∫︂ 1

0
(1 − x)j−1xt1−1 dx

(70)

+
∫︂ 1

0
(1 − x)j−1xt1−1(logx)dx + O

(︁
ν−1 logν

)︁]︃
= (j − 1)!(t1 − 1)!

(t1 + j − 1)! · νt1+j−1 logν + O
(︁
νt1+j−2 logν

)︁
,

and t1 +j −1 ≤ t1 + t2 −1 = t −1. Combining (69) and (70), and using s(b, b) = 1, s(b,0) =
0 for b > 0, we have

ν−1∑︂
k=2

(ν − k)t2

ν − k
kt1−1 log k

= (hν−1 − ht1−1)ν
t1−1 logν + (t2 − 1)!(t1 − 1)!

(t − 1)! νt−1 logν + O
(︁
νt−2 logν

)︁
.

So, the factor by α in (68) is

νt−1 logν

hν−1

(︄
hν−1 − ht−1 +

t∑︂
t1=1

(t2 − 1)!(t1 − 1)!
(t − 1)! + O

(︁
ν−1)︁)︄ − νt−1 logν

= νt−1 logν

hν−1

(︄
−ht−1 +

t∑︂
t1=1

(t2 − 1)!(t1 − 1)!
(t − 1)! + O

(︁
ν−1)︁)︄

.
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Consequently the equation (68) becomes

Vν,t = (ν − 1)t−1 + α
νt−1 logν

hν−1

(︄
−ht−1 +

t∑︂
t1=1

(t2 − 1)!(t1 − 1)!
(t − 1)! + O

(︁
ν−1)︁)︄

+ 1

hn−1

t∑︂
t1=2

ν−1∑︂
k=2

(ν − k)t2

ν − k
Vk,t1

= O
(︁
νt−1 log−1 ν

)︁ + 1

hn−1

t∑︂
t1=2

ν−1∑︂
k=2

(ν − k)t2

ν − k
Vk,t1,

if we select

α =
(︃
ht−1 − ∑︂

t1+t2=t

(t1 − 1)!(t2 − 1)!
(t − 1)!

)︃−1
.

We omit the rest of the proof since it runs just like the final part of the proof of Proposi-
tion 2.14. □

2.12. Counting the subtrees by the number of their leaves. Since the tree with n leaves
has 2n − 1 vertices, there are exactly 2n − 1 subtrees, with the number of leaves ranging,
with possible gaps, from 1 to n. Let Xn(t) be the number of subtrees with t leaves; so
Xn(1) = n, Xn(n) = 1, and Xn(t) = 0 for t > n. Now,

∑︁
t≥1 Xn(t) = 2n−1, so {un(t)}t≥1 :=

{E[Xn(t)]
2n−1 }t≥1 is the probability distribution of the number of leaves in the uniformly random

subtree, that is, the subtree rooted at the uniformly random vertex of the whole tree. Further-
more

(71) E
[︁
Xn(t)

]︁ = n

2hn−1

n−1∑︂
j=1

E[Xj(t)] + E[Xn−j (t)]
j (n − j)

= n

hn−1

n−1∑︂
j=1

E[Xj(t)]
j (n − j)

.

So, with ξn(t) := E[Xn(t)]
n

, and hk := ∑︁k
j=1

1
j

, we have

(72) ξn(t) = 1

hn−1

n−1∑︂
j=t

ξj (t)

n − j
, n ≥ t + 1,

(︃
ξt (t) = 1

t

)︃
,

and clearly un(t) = ξn(t)

2−n−1 .

THEOREM 2.16. (i) ξn(t) ∈ [ 1
t2 , 1

tht
], 1

t
≤ ∑︁

τ≥t ξn(τ ) ≤ 2
t
, the last bound implying that

the sequence of distributions {un(t)}t≥1 is tight.
(ii) For q ∈ (0,1), Fn(q) := ∑︁

t≥1 qtξn(t) decreases with n. Consequently, the sequence of
distributions {un(t)}t≥1 converges to a proper distribution {u(t)}t≥1.

(iii) However, the expected size of the uniformly random subtree is asymptotic to 3
2π2 log2 n.

We conjecture that (ii) can be improved to the stronger assertion that ξn(t) is decreasing
with n, for each t . We are grateful to Huseyin Acan [1] for numerically verifying this for n

and t below 1000.

PROOF. (i) Let us show that ξn(t) ≥ 1
t2 for n ≥ t > 1. By (71), we have ξt (t) = 1

t
and

ξt+1(t) = 1
tht

, both above 1
t2 . Suppose that n ≥ t + 1 is such that ξj (t) ≥ 1

t2 for all j ∈ [t, n].
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This is true for n = t + 1. For n > t + 1,

ξn(t) ≥ ξt (t)

hn−1(n − t)
+ 1

t2hn−1

n−1∑︂
j=t+1

a

n − j
= 1

hn−1(n − t)t
+ hn−1−t

t2hn−1

= 1

t2 + 1

hn−1(n − t)t
+ hn−1−t − hn−1

t2hn−1

≥ 1

t2 + 1

hn−1(n − t)t
− 1

t2hn−1
· t

n − t
= 1

t2 ,

which completes the induction step. The proof of ξn(t) ≤ 1
tht

is similarly reduced to showing

that (n−1)ht

(n−t)thn−1
≤ 1 for n > t + 1. This is so, as the fraction is at most ht

ht+1
· t+1

2t
.

Let us prove that 1
t

≤ ∑︁
τ≥t ξn(τ ) ≤ 2

t
. Introduce Yn(t) = ∑︁

τ≥t Xn(τ ), the total number

of subtrees with at least t leaves, and ηn(t) := E[Yn(t)]
n

= ∑︁
τ≥t ξn(τ ); so ηn(1) = 2n−1

n
, and

ηn(n) = 1
n

. Analogously to (71), we have

ηn(t) = 1

hn−1

n−1∑︂
j=t

ηj (t)

n − j
, n ≥ t + 1.

We need to show that ηn(t) ≤ 2
t

for all n ≥ t . It suffices to consider n > t > 1. Suppose that
for some n ≥ t and all j ∈ [t, n] we have ηj (t) ≤ 2

t
. This is definitely true for n = t . Then

ηn+1(t) = 1

hn

n∑︂
j=t

ηj (t)

n + 1 − j
≤ 2

thn

n∑︂
j=t

1

n + 1 − j
= 2hn+1−t

thn

≤ 2

t
,

which competes the inductive proof of ηn(t) ≤ 2
t
.

(ii) For n ≥ 2, we have

Fn(q) = ∑︂
t≥1

qtξn(t) = ∑︂
t≥1

qt

hn−1

n−1∑︂
j=t

ξj (t)

n − j

= 1

hn−1

n−1∑︂
j=1

1

n − j

j∑︂
t=1

qtξj (t) = 1

hn−1

n−1∑︂
j=1

Fj (q)

n − j
.

Therefore,

Fn+1(q) = 1

hn

n∑︂
j=1

Fj (q)

n + 1 − j
= 1

hn

(︄
F1(q)

n
+

n∑︂
j=2

Fj (q)

n + 1 − j

)︄

≤ 1

hn

(︄
F1(q)

n
+

n−1∑︂
j=1

Fj (q)

n − j

)︄
≤ 1

hn

(︃
q

n
+ hn−1Fn(q)

)︃
≤ Fn(q),

since Fn(q) ≥ qξn(t) = q , and hn − hn−1 = 1
n

. Therefore, for each q ∈ (0,1) there exists
F(q) = limn→∞

∑︁
t≥1 qtξn(t), implying existence of limn→∞

∑︁
t≥1 qtun(t) = 2F(q). For

any weakly convergent subsequence of the distributions {uni
(t)}t≥1, for each x in the unit

disc there exists limni→∞
∑︁

t≥1 xtuni
(t), dependent on the subsequence, which is analytic

within the disc. All these limits coincide for x ∈ (0,1), whence they coincide for all x within
the disc, whence on the whole disc. Since the characteristic function determines the distri-
bution uniquely, we see that the whole sequence of the distributions converges to a proper
distribution.
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(iii) Zn := ∑︁
t≥1 tXn(t) is the total number of the leaves, each leaf counted as many times

as the number of the subtrees rooted at the vertices along the path from the root to the leaf,
which is distributed as 1 plus Ln, the edge-length of the path to the random leaf. Therefore,
E[Zn]
2n−1 = n

2n−1(1 +E[Ln]), and it remains to use Proposition 2.9. □

3. Other methods. Our results here demonstrate that the analysis of recursions method
is very effective at deriving sharp asymptotics for the questions addressed here. However,
there are many other aspects of the model that could be studied, and a wide variety of familiar
general modern probabilistic techniques that could be applied. We indicate such possibilities
briefly below—see the preprint [4] for a more comprehensive account.

It is intuitively clear that for our tree model (call it Tn, say) there should be two n → ∞
limit structures:

(a) A scaling limit process, which is a fragmentation of the unit interval via some sigma-
finite splitting measure.

(b) A fringe process, which is the local weak limit relative to a random leaf, describable as
some marked branching process. This starts with an explicit description of the limit distribu-
tion {u(t)}t≥1 in Theorem 2.16.

Less intuitive is a piece of structure theory. In our discrete-time model there is no simple
connection between Tn and Tn+1. In the continuous-time model with our chosen rates hn−1
(and this is the reason for that particular choice), [4] shows there is a nonobvious consistency
property under a “delete a random leaf and prune” operation. This enables an inductive con-
struction of a process (Tn, n = 2,3,4, . . .), which in turn suggests the possibility of a.s. limit
theorems.

Readers may notice that the issues above are somewhat analogous to those arising in the
theory surrounding the Brownian continuum random tree (CRT) as a limit of certain other
random tree models [2, 9]. However, in contrast to the CRT setting, the two limit processes
above would not capture the asymptotics of the quantities studied in this article.
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referees for the time and effort to repeatedly read the paper and to provide expert critical
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