Nou 28, 2023

Outline

Nonparametric Estimation

Setting Nonparametric iid sampling model

$$X_{1,...,X_{n}} \stackrel{iid}{\rightarrow} P$$
, P unknown
Want to do inference on some "parameter" $\Theta(P)$
 $E_{X} \rightarrow \Theta(P) = median(P)$ ($\chi \in \mathbb{R}$)
 $\Theta(P) = \lambda_{max}(Var_{p}(x_{c}))$ ($\chi \in \mathbb{R}^{d}$)
 $\Theta(P) = \lambda_{max}(Var_{p}(x_{c}))$ ($\chi \in \mathbb{R}^{d}$)
 $\Theta(P) = argmin \mathbb{E}_{p}\left[(Y_{i} - \Theta' x_{i})^{2}\right]$
 $\Theta \in \mathbb{R}^{d}$ $\sum_{\substack{\alpha \in \mathbb{R}^{d} \\ (x_{i}, y_{c}) \stackrel{iid}{\rightarrow} P}} \sum_{\substack{\alpha \in \mathbb{R}^{d} \\ \Theta \in \Theta}} \sum_{\substack{\alpha \in \mathbb{R}^{d} \\ P \in \mathbb{R}^{d}}} \sum_{\substack{\alpha \in \mathbb{R}^{d}}} \sum_{\substack{\alpha \in \mathbb{R}^{d}}} \sum_{\substack{\alpha \in \mathbb{R}^{d} \\ P \in \mathbb{R}^{d}}} \sum_{\substack{\alpha \in \mathbb{R}^{d} \\ P \in \mathbb{R}^{d}}} \sum_{\substack{\alpha \in$

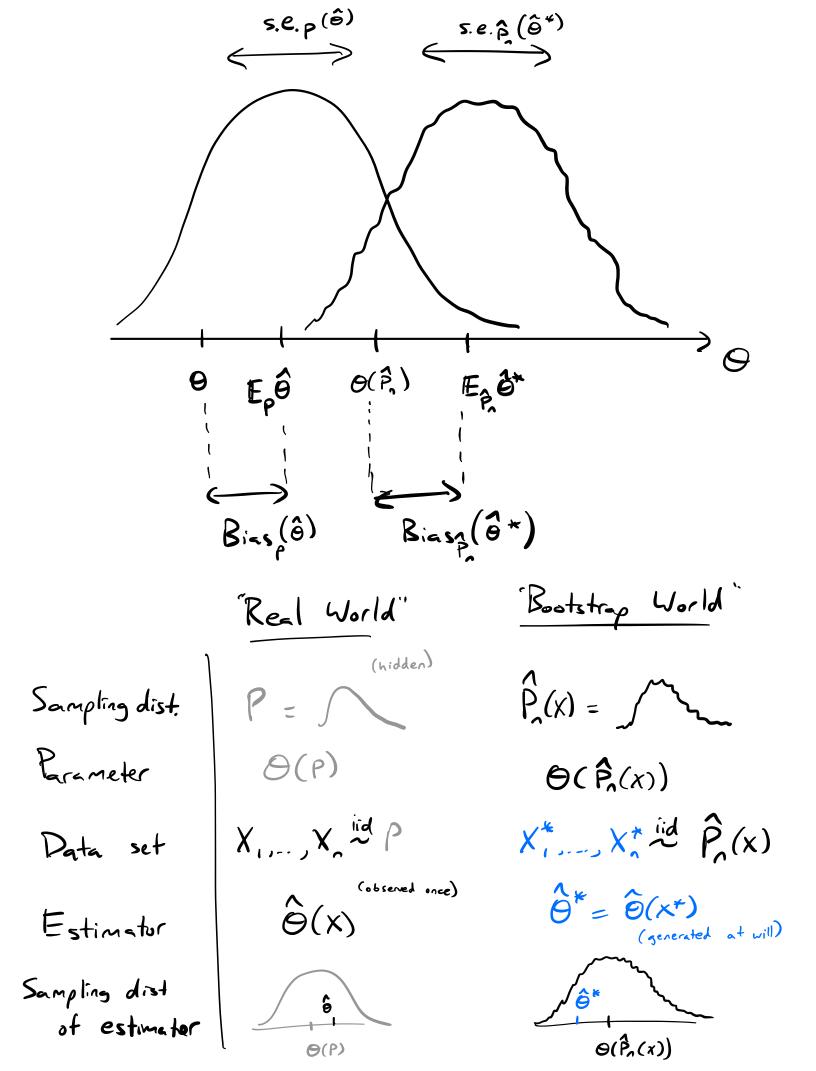
Recall the empirical dist of
$$X_{1,-1}, X_n$$
 is
 $\hat{P}_n = \frac{1}{n} \sum \delta_{X_i}$ $(\hat{P}_n(A) = \frac{\#\{i: X_i \in A\}}{n})$
The plug-in estimator of $\Theta(P)$ is $\hat{\Theta} = \Theta(\hat{P}_n)$
a) Sample median
b) λ_{max} (sample var)
c) ols estimator
d) MLE for $\{P_0: \Theta \in \Theta\}$

Does plug-in estimator work? Depends

$$\hat{P}_{n} \stackrel{c}{\rightarrow} P$$
? Dep. on what sense of convergence
 $\hat{P}_{n}(A) \stackrel{P}{\rightarrow} P(A)$ for all A V
(TN)
 $\stackrel{sup}{\rightarrow} |\hat{P}_{n}(A) - P(A)| \stackrel{P}{\rightarrow} O$ if P etc. X
 $(use A_{n} = \xi \times \dots \times \chi_{n} \xi)$
 $\stackrel{sup}{\rightarrow} |\hat{P}_{n}((-\infty, x]) - P((-\infty, x))| \stackrel{P}{\rightarrow} O$ for $X \in \mathbb{R}$ V
Want $\Theta(P)$ to be ets with some topology
in which $\hat{P}_{n} \stackrel{P}{\rightarrow} P$, then $\Theta(\hat{P}_{n}) \stackrel{P}{\rightarrow} \Theta(P)$
Counterexamples
 $\Theta(P) = 1\{P \text{ is absolutely ets } (P \leftarrow Lebessme)$
 $\Theta(P) = 1\{P \text{ is integrable} \}$ $(F \in Lebessme)$
 \hat{P}_{n} always integrable, never abs. ets., for all n .

Bootstrap standard errors
Suppose
$$\hat{\Theta}_{n}(X)$$
 is an estimator for $\Theta(P)$
(Maybe plug-in, maybe not)
What is its standard error? Use plug-in:
 $\hat{S.e.}(\hat{\Theta}_{n}) = \sqrt{Var}_{\hat{P}_{n}}(\hat{\Theta}_{n}^{*})$ [use $\hat{\Theta}_{n}^{*}$ to indicate
 $Var_{\hat{P}_{n}}(\hat{\Theta}_{n}^{*}) = \sqrt{Var}_{\hat{P}_{n}}(\hat{\Theta}_{n}^{*})$ [use $\hat{\Theta}_{n}^{*}$ to indicate
 $Var_{\hat{P}_{n}}(\hat{\Theta}_{n}^{*}) = Var_{\hat{V}_{n} \dots, \hat{V}_{n}^{*}} \stackrel{\text{if } \hat{P}_{n}}{\hat{P}_{n}}(\hat{\Theta}_{n}(X_{1}^{*},\dots, X_{n}^{*}))$
How to compute? Monte Carlo:
 $Var_{\hat{P}_{n}}(\hat{\Theta}_{n}^{*}) = \hat{V}_{n} \stackrel{\text{if } \hat{P}_{n}}{\hat{P}_{n}} \stackrel{\text{Sample n points}}{\hat{P}_{n}}$
 $Var_{\hat{P}_{n}}(\hat{\Theta}_{n}^{*}) = \hat{V}_{n} \stackrel{\text{if } \hat{P}_{n}}{\hat{P}_{n}} \stackrel{\text{Sample n points}}{\hat{P}_{n}}$
 $Var_{\hat{P}_{n}}(\hat{\Theta}_{n}^{*}) = \hat{V}_{n} \stackrel{\text{Sample n points}}{\hat{P}_{n}} \stackrel{\text{with replacement}}{\hat{P}_{n}} \stackrel{\text{for } \hat{P}_{n}}{\hat{P}_{n}} \stackrel{\text{Sample n points}}{\hat{P}_{n}} \stackrel{\text{with replacement}}{\hat{P}_{n}} \stackrel{\text{for } \hat{P}_{n}}{\hat{P}_{n}} \stackrel{\text{fo$

Bootstrap Bias Correction Ôn some estimator. What is its bias? $B_{iasp}(\hat{\theta}_{n}) = \mathbb{E}_{P} \left[\hat{\Theta}_{n} - \Theta(P) \right]$ Idea: plug in P. for P: $B_{ias} \hat{p}(\hat{\theta}_{n}^{*}) = \mathbb{E}_{\hat{P}_{n}} \left[\hat{\theta}_{n}^{*} - \Theta(\hat{P}_{n}) \right]$ Monte Carlo: For b=1,..., B: Sample X the , X the ind P $\hat{\Theta}^{*b} = \hat{\Theta}(\chi^{*b})$ $\overline{\Theta}^* = \frac{1}{B} \stackrel{\times}{\Sigma} \stackrel{\circ}{\Theta}^{*b}$ $\hat{B}_{ins}(\hat{\theta}_n) = \bar{\theta}^* - \Theta(\hat{P}_n)$ We can use this to correct bias ? $\hat{\Theta}_{n}^{BC} = \hat{\Theta}_{n} - \hat{B}_{ins}(\hat{\Theta}_{n})$ Note: while ôn-Bias(ôn) is always better than ôn, Ôn-Bias(ôn) may not be! Might be adding wir.



Bootstrap Confidence Interval How do we get a CI for O(P)? Idea: What if we knew the distribution of $R(x,p) = \hat{\Theta}(x) - \Theta(p)$? Define $cdf G_{n,p}(r) = \prod_{p} (\hat{\theta}(x) - \theta(p) \leq r)$ Lower 7/2 quantile (= G, p (1/2) U_{pper} " $\Gamma_2 = G_{a,p}^{-1} (1 - \gamma_2)$ $|-\alpha = P_{p}(r_{1} \leq \hat{\Theta}_{n} - \Theta \leq r_{2})$ $= \mathbb{P}_{p}(\Theta \in [\widehat{\Theta}_{n} - r_{2}, \widehat{\Theta}_{n} - r_{1}])$ Usually we don't know Gn, p -- so bootstrap! $G_{n,\hat{p}}(r) = P_{\hat{p}}(\hat{\Theta}(x^*) - \Theta(\hat{P}_n) \leq r)$ Gn, p(r) is a function only of X (not of P) Con use $C_{n,q} = \left[\hat{\Theta}_n - \hat{r}_2, \hat{\Theta}_n - \hat{r}_1\right]$ with $\hat{r}_{1} = G_{n,\hat{p}}(\tau_{2}), \quad \hat{r}_{2} = G_{n,\hat{p}}(1-\tau_{2})$

Double Bootstrap
We might have theory that tells us, eg.
sup
$$|G_{n,R}([a,b]) - G_{n,P}([a,b])| \xrightarrow{P} 0$$

but still be worried about finite-semple
coverage.
Let $\gamma_{n,R}(x) = \prod_{P} (C_{n,x} = \Theta(P))$
 $\rightarrow 1 - \alpha$ if $C_{n,x}$ has
asy. coverage
But in finite samples, might have
 $\gamma_{n,P}(x) < 1 - \alpha$
e.g., "90% interval" has 87% coverage
 $\gamma_{n,P}(0.1) = 0.87 < 0.9$
Solution? Double Bootstrap!
1. Estimate $\gamma_{n,P}(\cdot)$ via plug-in $\gamma_{n,P_n}(\cdot)$
 a . Use $C_{n,n}(x)$ where $\hat{j}(\hat{a}) = 1 - \alpha$
e.g., estimate "92% interval" has 90% coverage $\hat{a} = .08$

Step 1 algo.
For
$$a = 1, ..., A$$
:

$$\begin{cases}
X_{1}^{*a}, ..., X_{n}^{*a} & \stackrel{iid}{\rightarrow} \hat{P}_{n} \\
\hat{P}_{n}^{*a} &= \frac{1}{n} \sum_{i=1}^{n} \delta_{X_{i}^{*a}} \\
For b = 1, ..., B: \\
X_{1}^{**a,b}, ..., X_{n}^{**a,b} & \stackrel{iid}{\rightarrow} \hat{P}_{n}^{*a} \\
R_{n}^{**a,b} &= (\hat{\Theta}_{n} (X^{**a,b}) - \Theta (\hat{P}_{n}^{*a})) / \hat{\delta} (X^{**a,b}) \\
\hat{G}_{n}^{*a} &= ecdf (R_{n}^{**a,1}, ..., R_{n}^{**a,B}) \\
For a \in grid: \\
1 C_{n,a}^{*a} &= [\hat{\Theta}_{n}^{**a} - \hat{\sigma}^{*a} \cdot r_{1}(\hat{G}_{n}^{*a})] \\
For a \in grid: \\
1 C_{n,a}^{*a} &= [\hat{\Theta}_{n}^{**a} - \hat{\sigma}^{*a} \cdot r_{1}(\hat{G}_{n}^{*a})]
\end{cases}$$

$$\hat{\gamma}(\alpha) = \frac{1}{A} \sum_{\alpha} 1 \{ C_{n,\alpha}^{*\alpha} \neq \Theta(\hat{P}_{\alpha}) \}$$

$$\hat{\varphi} = \hat{\gamma}^{-1}(1-\alpha)$$