Outline

1) Testing with nuisance $p$ parameters
2) $u M P U$ multivariate tests
3) Conditioning on null sufficient stat

Nuisance Parameters
Common setup: Extra unknown parameters which are not of direct interest

$$
P=\left\{P_{\theta, \lambda}:(\theta, \lambda) \in \Omega\right\}, H_{0}: \theta \in \Theta_{0} \text { us } H_{1}: \theta \in \Theta
$$

$\theta$ parameter of interest
$\lambda$ nuisance parameter
Issue: $\lambda$ unknown but might affect type I error or power of a given test

Ex $\quad X_{1}, \ldots, X_{1} \stackrel{i i d}{\sim} N\left(\mu, \sigma^{2}\right) \quad Y_{1}, \ldots, Y_{m} \stackrel{i d}{\sim} N\left(\nu, \sigma^{2}\right)$ $\mu, \nu, \sigma^{2}$ unknown
$H_{0}: \mu=\nu$ us $H_{1}: \mu \neq v$

$$
\theta=\mu-\nu \quad \lambda=\left(\mu+v, \sigma^{2}\right) \quad \text { or }\left(\mu, \sigma^{2}\right)
$$

$E_{X} \quad X_{1} \sim \operatorname{Binom}\left(n_{1}, \pi_{1}\right) \quad X_{2} \sim \operatorname{Binom}\left(n_{2}, \pi_{2}\right)$ $n_{1}, n_{2}$ known $\Rightarrow$ not nuisance parameters $H_{0}: \pi_{1} \leq \pi_{2}$ us $H_{1}: \pi_{1}>\pi_{2}$

Multiparameter Exp. Families
Assume $\quad X \sim \rho_{\theta, \lambda}(x)=e^{\theta^{\prime}(x)+\lambda^{\prime} u(x)-A(\theta, \lambda) h(x)}$
$\theta \in \mathbb{R}^{s}, \lambda \in \mathbb{R}^{r}$, both unknown
How to test $H_{0}: \theta \in \Theta_{0}$ us $H_{1}: \theta \in \Theta_{1}$ ?
Idea: Condition on $U(x)$ to eliminate dep. on $\lambda$

1) Sufficiency reduction:

$$
\begin{aligned}
(T(x), u(x)) & \sim q_{\theta, \lambda}(t, n) \\
& =e^{\theta_{t}^{\prime}+\lambda^{\prime} u-A(\theta, \lambda)} g(t, n)
\end{aligned}
$$

(density wot eeg. Lebesgue on $\mathbb{R}^{s+r}$ )
2) Condition on $U(x)$ :

$$
\begin{aligned}
q_{\theta}(t \mid u) & =\frac{q_{\theta, \lambda}(t, n)}{\int q_{\theta, \lambda}(z, n) d z} \\
& =\frac{e^{\theta_{t}^{\prime}+\lambda^{\prime} u-A(\theta, \lambda)} g(t, n)}{e^{B_{u}(\theta)}}=\int e^{\theta^{\prime}+\lambda^{\prime} u-A(\theta, \lambda)} g(z, u) d z \\
& =e^{\theta^{\prime} t-B_{u}(\theta)} g(t, u)
\end{aligned}
$$

3) Conditional test:

Test $H_{0}: \theta \in \Theta_{0}$ us. $H_{1}: \theta \in \Theta$, in s-paraneter model $Q_{u}=\left\{q_{\theta}(t \mid n): \theta \in \Theta\right\}$

Note if $s=1$, this family has MLR in $T$ Even if $s>1$, we still have gotten rid of $\lambda$

Theorem (Informal)

Theorem Let $\rho$ be full rank exp fan. with densities $\rho_{\theta, \lambda}(x)=e^{\theta T(x)+\lambda^{\prime} u(x)-A(\theta, \lambda)} h(x)$ $\theta \in \mathbb{R}, \lambda \in \mathbb{R}^{r},(\theta, \lambda) \in \Omega$ open, $\theta_{0}$ possible
a) To test $H_{0}: \theta \leq \theta_{0}$ vs. $H_{1}: \theta>\theta_{0}$, there is a umpu test $\phi^{*}(x)=\psi(T(x) ; u(x))$ where

$$
\psi(t ; n)=\left\{\begin{array}{cl}
1 & t>c(n) \\
x(n) & t=c(n) \\
0 & t<c(n)
\end{array}\right.
$$

With $c(u), x(n)$ chosen to make

$$
\mathbb{E}_{\theta_{0}}\left[\phi^{*}(x) \mid U(x)=u\right]=\alpha
$$

b) To test $H_{0}: \theta=\theta_{0}$ us. $H_{:}: \theta \neq \theta_{0}$ there is a umPu test $p^{*}(x)=\psi(T(x) ; u(x))$ where

$$
\psi(t ; n)= \begin{cases}1 & t<c_{1}(n) \text { or } \quad t>c_{2}(n) \\ \gamma_{i}(n) & t=c_{i}(n) \\ 0 & t \in\left(c_{1}(n), c_{2}(n)\right)\end{cases}
$$

with $c_{i}(n), \gamma_{i}(n)$ chosen to make

$$
\begin{aligned}
& \mathbb{E}_{\theta_{0}}\left[\phi^{*}(x) \mid u(x)=n\right]=\alpha \\
& \mathbb{E}_{\theta_{0}}\left[T(x)\left(\phi^{*}(x)-\alpha\right) \mid u(x)=n\right\}=0
\end{aligned}
$$

[Note $\lambda$ has disappeared from the problem.]

Ex: $\quad X_{i} \stackrel{\text { ind }}{\sim} P_{\text {Dis }}\left(\mu_{i}\right) \quad i=1,2$

$$
\begin{aligned}
H_{0}: \mu_{1} & \leq \mu_{2} \text { vs. } H_{1}: \mu_{1}>\mu_{2} \\
\rho_{\mu}(x) & =\prod_{i=1}^{2} \frac{\mu_{i}^{x_{i}} e^{-\mu_{i}}}{x_{i}!} \\
& =e^{x_{1} r_{1}+x_{2} r_{2}-\left(e^{r_{1}}+e^{r_{2}}\right)} \frac{1}{x_{1}!x_{2}!}
\end{aligned}
$$

(Where $\eta_{i}=\log \mu_{i} . H_{0}: \eta_{1} \leq \eta_{2} \quad H_{1}: \eta_{1}>\eta_{2}$ )

$$
=e^{T(x)} \cdot \overbrace{\left(\eta_{1}-\eta_{2}\right)}^{\theta}+\overbrace{\left(x_{1}+x_{2}\right)}^{u(x)} \overbrace{\eta_{2}}-A\left(\eta_{r} \frac{1}{x_{1}!x_{2}!}\right.
$$

$H_{0}: \theta \leq 0$ os $H_{1}: \theta>1$
Reject for conditionally large $v=$ lues of

$$
x_{1} \text {, given } x_{1}+x_{2}=n
$$

$$
\begin{aligned}
\mathbb{P}_{\theta}\left(X_{1}=x_{1} \mid U=n\right) & =e^{x_{1} \theta+u x-A(\cdot)} \cdot \frac{1}{x_{1}!\left(n-x_{1}\right)!} / \sum_{x_{1}=0}^{n}(\cdot) \\
& \alpha_{x_{1}} e^{x_{1} \theta} \cdot \frac{u!}{x!\left(n-x_{1}\right)!} \\
& =\operatorname{Binom}\left(u, \frac{e^{\theta}}{1+e^{\theta}}\right) \quad e^{\theta}=\mu_{1 / \mu_{2}}
\end{aligned}
$$

$=\operatorname{Binom}\left(u, \frac{\mu_{1}}{\mu_{1}+\mu_{2}}\right)$ end we do a Binomial test.

Proof Sketch


1) Any unbiased test has $\beta\left(\theta_{0}, \lambda\right)=\alpha \quad \forall \lambda$ (continuity)
2) Power $\equiv \alpha$ on boundary $\Rightarrow \mathbb{E}_{\theta_{0}}[\phi \mid u] \stackrel{\text { ass. }}{=} \alpha$ $(u(x)$ complete sufficient on boundary submodel)
3) $\phi^{*}$ optimal among all tests with conditional level a (by reduction to univariate model)

Proof Assume $\phi$ any unbiased test
Step 1: $\mathbb{E}_{\theta, \lambda}|\phi(x)| \leq 1<\infty \quad \forall(\theta, \lambda) \in \Omega$ $\stackrel{\text { Keener }}{\Rightarrow} \stackrel{\text { the }}{\Rightarrow} \mathbb{E}_{\theta, \lambda} \phi(x)$ infinitely diff. on $\Omega$, can diff. under $\int$ $\phi$ unbiased $\left.\Rightarrow \mathbb{E}_{\theta_{0}, \lambda} \backslash \phi(x)\right]=\alpha \quad \forall\left(\theta_{0}, \lambda\right) \in \Omega$

Step 2: Boundary submodel: $\mathcal{P}_{\theta_{0}}=\left\{P_{\theta_{0}, \lambda}:\left(\theta_{0}, \lambda\right) \in \Omega\right\}$

$$
P_{\theta_{0}, \lambda}(x)=e^{\lambda^{\prime} U(x)-A\left(\theta_{0}, \lambda\right)} \cdot \frac{e^{\theta_{0} T(x)}}{h(x)}
$$

$\rho_{\theta_{0}}$ is full-rank, s-param exp. for, $U(x)$ comp.suff
Let $f(u)=\mathbb{E}_{\theta_{0}}[\phi(x) \mid u(x)=n]-\alpha$

$$
\begin{aligned}
& \mathbb{E}_{\theta_{0}, \lambda}[f(u(x))]=\mathbb{E}_{\theta_{0}, \lambda}[\phi(x)]-\alpha=0 \quad \forall \lambda \\
& \Rightarrow f(n)=0 \\
& \Rightarrow \mathbb{E}_{\theta_{0}}[\phi(x) \mid u(x)=u]=0 \quad \forall u
\end{aligned}
$$

Two -sided case: $\quad g(u)=\frac{d}{d \theta} \mathbb{E}_{\theta_{0}}[\phi \mid U=u]$

$$
\begin{aligned}
& =\mathbb{E}_{\theta_{0}}\left[\left(T-\mathbb{E}_{\theta_{0}}[T \mid u]\right) \phi \mid u\right] \\
& =\mathbb{E}_{\theta_{0}}[T(\phi-\alpha) \mid u]
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{E}_{\theta_{0}, \lambda} g(u)=\mathbb{E}_{\theta_{0}, \lambda}[T(\phi-\alpha)]=\frac{\partial}{\partial \theta} \beta_{\phi}\left(\theta_{0}\right)=0 \forall \lambda \\
& \Rightarrow \frac{d}{d \theta} \mathbb{E}_{\theta_{0}}[\phi \mid u] \stackrel{\text { a.s. }}{=} 0 \quad \text { (Condil power has } \\
& \Rightarrow \text { derivative } 0+\theta_{0} \text { ) }
\end{aligned}
$$

Step 3: For any value $u$, the conditional model is $q_{\theta}(t \mid u)=e^{\theta t-B_{u}(\theta)} g(t, u), 1$-paras. exp fan
In one- / two-sided case, we have shown $\psi(t ; n)$ is UMP/UMPU in $Q_{n}$

Let $\bar{\phi}(t ; u)=\mathbb{E}[\phi(x) \mid T(x)=t, u(x)=u]$

$$
\begin{aligned}
\mathbb{E}_{\theta}[\bar{\phi}(T ; u) \mid u=n] & =\mathbb{E}_{\theta}[\phi(x) \mid u(x)=n] \\
& =\alpha \text { if } \theta=\theta_{0}
\end{aligned}
$$

$\Rightarrow \bar{\phi}(\cdot ; n)$ is a (Condil) test of $H_{0}$ us. $H_{1}$ in $Q_{n}$ with power $=\alpha$ at bunndary
One-sided case:
$\psi(t ; n)$ is the UMP test of $\theta=\theta_{0}$ us $\theta>\theta_{0}$ in $Q_{n}$, which is a 1 -pram. exp. fam.

Two-sided case :
$\psi(t ; n)$ is the uMP test of $\theta=\theta_{0}$ vs. $\theta \neq \theta_{0}$ among tests with power $=\alpha, \frac{d}{d \theta}$ power $=0 @ \theta_{0}$ (Keener The 12.22, main the. for two-sided tests)
In either case $\psi$ has higher bond. power than $\bar{\phi}$, a.s.

For $\quad(\theta, \lambda) \in \Omega_{1}$ :

$$
\begin{aligned}
\mathbb{E}_{\theta, \phi}[\phi(x)] & =\mathbb{E}_{\theta, \lambda}\left[\mathbb{E}_{\theta}[\bar{\phi}(T ; u) \mid u]\right] \\
& \leq \mathbb{E}_{\theta, \lambda}\left[\mathbb{E}_{\theta}[\psi(T ; u) \mid u]\right] \\
& =\mathbb{E}_{\theta, \lambda}\left[\phi^{*}(x)\right]
\end{aligned}
$$

Ex $\quad X_{1}, \ldots, X_{n}$ iid $N\left(\mu, \sigma^{2}\right) \quad \sigma^{2}>0$ unknown

$$
\begin{aligned}
H_{0}: \mu & =0 \text { vs. } H_{i}: \mu \neq 0 \\
\rho_{\mu, \sigma^{2}}(x) & =e^{\overbrace{}^{\frac{\mu}{\sigma^{2}} \sum x_{i}} \overbrace{T=\bar{x}}^{\overbrace{2 \sigma^{2}}} \overbrace{\sum x_{i}^{2}-\frac{n \mu}{2 \sigma^{2}}}^{n=\|x\|^{2}}} \begin{array}{l}
\left(\frac{1}{2 \pi \sigma^{2}}\right)^{n / 2}
\end{array}
\end{aligned}
$$

Optimal test rejects when $\bar{x}$ is extreme given $\|x\|$

If $\mu=0, \rho$ is rotationally symmetric

$$
\begin{aligned}
& \Longrightarrow X \mid\|x\|^{2}=n \quad \stackrel{H_{0}}{\sim} U_{n i f}\left(\sqrt{n} \cdot S^{n-1}\right) \\
& \left(\Leftrightarrow \frac{X}{\|x\|} \stackrel{H_{0}}{\sim} u_{n i f}\left(S^{n-1}\right) \text {, indop. of }\|x\|\right)
\end{aligned}
$$

Optimal test rejects when $\frac{\bar{x}}{\|x\|}$ extreme (marginally)

Could stop here \& simulate

Geometric Picture $(n=2)$

t -statistic

Above test rejects for

- conditionally extrene $\bar{X}$ given $\|x\|^{2}$

OR - marginally extreme $\frac{\bar{x}}{\|x\|}$ ( $\left\|\|x\|^{2}\right.$ ) (equiv..)

Equivalent: reject for marginally extreme

$$
\begin{aligned}
& T=\frac{\sqrt{n} \bar{x}}{\sqrt{s^{2}}} \text {, where } \\
& S^{2}=\frac{1}{n-1} \sum\left(x_{i}-\bar{x}\right)^{2} \quad \text { (sample variance) } \\
& =\frac{1}{n-1}\left(\sum x_{i}^{2}-2 \bar{x} \sum x_{i}+n \bar{x}^{2}\right) \\
& =\frac{1}{n-1}\left(\|x\|^{2}-n \bar{x}^{2}\right) \\
& r \rightarrow \frac{r}{\sqrt{1-r^{2}}}: \\
& \Rightarrow \quad T=\sqrt{n-1} \cdot \frac{\sqrt{n} \bar{X}}{\sqrt{\|X\|^{2}-n \bar{X}^{2}}}=\sqrt{n-1} \cdot \frac{R}{\sqrt{1-R^{2}}} \\
& \text { for } R=\frac{\sqrt{n} \bar{x}}{\|x\|}=\underbrace{\sim_{\sqrt{n}} 1_{n} \frac{L^{\prime}}{L^{n}} \frac{x}{\|x\|}}_{f\left(\frac{x}{1 \mid x \|}\right) \Rightarrow \|_{\|x\|}}=\cos \notin\left(1_{n}, x\right)
\end{aligned}
$$

Geometric Picture

$$
T=\frac{\sqrt{n} \bar{x}}{\sqrt{s^{2}}}=\frac{\left\|\operatorname{Proj}_{1_{n}} x\right\|}{\left\|\operatorname{Proj}_{1_{n}} x\right\|} \cdot \sqrt{n-1} \operatorname{sgn}(\bar{x})
$$



Next major theme: ratios of projections

Permutation Tests
Even if we don't get a uMPu test at the end, conditioning on null cuff. stat. still helps.
Ex. $X_{1}, \ldots, x_{n} \stackrel{i i d}{\sim} P \quad Y_{1},-, Y_{m} \stackrel{i \cdot d}{ } Q \quad H_{0} \cdot P=Q \quad H_{i} P \neq Q$ Under $H_{0}, P=Q, \quad x_{1}, \ldots, x_{n}, Y_{1}, \ldots, Y_{m}$ rid $P$ Let $\left(z_{1}, \ldots, z_{n+m}\right)=\left(X_{1}, \ldots, x_{n}, Y_{1}, \ldots, Y_{m}\right)$
Under $H_{0}, U(z)=\left(z_{(1)}, \ldots, z_{(n+m)}\right)$ compl. shf Let $S_{n+m}=$ \{Permutations on $n+m$ elements \} $(x, y) \mid u \stackrel{H_{o}}{\sim} U_{n i f}\left(\left\{\pi U: \pi \in S_{n+m}\right\}\right)$ Thus, for any test stat $T$, if $P=Q$,

$$
\mathbb{P}_{P, Q}(T(z) \geqslant t \mid u)=\frac{1}{(n+m)!} \sum_{\pi \in S_{n+m}} 1(T(\pi z) \geqslant+3
$$

Monte Carlo test: In practice, we sample $\pi_{1}, \ldots, \pi_{B} \stackrel{\text { ind }}{\sim} S_{n+m}$ eeg. $B=1000$
Then $Z, \pi, Z, \ldots, \pi_{B} Z$ ind $U_{n i f}\left(S_{n+m} U\right)$ under $H_{0}$ MC $\rho$-value $\rho=\frac{1}{1+B} \sum_{b=1}^{B} 1\left\{T(z) \leq T\left(\pi_{b} z\right)\right\}$
$\stackrel{H_{0}}{\sim} U_{\text {ni f }}\left(\left\{\frac{1}{1+\beta}, \ldots, \frac{\beta-1}{1+\beta}, 1\right\}\right)$ (if no ties) ( $\rho \geq u_{n} i f(\cdot)$ if there are ties)

