$\frac{\text { Ont line }}{\text { 1) Review }}$
2) Sufficiency
3) Factorization Theorem

Sufficiency
Motivation: Coin flipping
Suppose $x_{1}, \ldots, x_{n} \stackrel{i i d}{\sim} \operatorname{Berroulli}(\theta)$

$$
\Rightarrow X \sim \prod_{i} \theta^{x_{i}}(1-\theta)^{1-x_{i}} \quad \text { on } \quad\left\{0,13^{n}\right.
$$

Then $T(x)=\sum x_{i} \sim \operatorname{Binom}(n, \theta)$

$$
=\theta^{t}(1-\theta)^{n-t}\binom{n}{t} \quad \text { on }\{0, \ldots, n\}
$$

$\left(x_{1}, \ldots, x_{n}\right) \leadsto T(x)$ is throwing away data. How do we justify this?
In exp. fam. lingo, $T(x)$ is the "sufficient statistic" for X. Today well see why we call it that.
Definition Let $P=\left\{P_{\theta}: \theta \in \Theta\right\}$ be a statistical model for data $X . T(x)$ is sufficient for P if $P_{\theta}(X \mid T)$ does not depend on θ

Example (Contd)

$$
\begin{aligned}
\mathbb{P}_{\theta}(X=x \mid T=t) & =\frac{\mathbb{P}_{\theta}(X=x, T=t)}{\mathbb{P}_{\theta}(T=t)} \\
& =\frac{\theta^{\Sigma x_{i}}(1-\theta)^{n-\sum x_{i}} 1\left\{\sum x_{i}=t\right\}}{\theta^{t}(1-\theta)^{n-t}\binom{n}{t}} \\
& =1\left\{\sum x_{i}=t\right\} /\binom{n}{t}
\end{aligned}
$$

So given $T(x)=t, \quad X$ is uniform on all seq.s with $\sum x_{i}=t$

Factorization Theorem

Often, we can identify sufficient stats by inspecting the density.

Theorem (Factorization Theorem)
Let $\rho=\left\{P_{\theta}: \theta \in \Theta\right\}$ be a model with densities
$\rho_{\theta}(x)$ wet common measure μ.
$T(x)$ is sufficient iff there exist $g_{\theta}(t), h(x)$ with

$$
P_{\theta}(x)=g_{\theta}(T(x)) h(x)
$$

for μ-almost-every $x: \mu\left(\left\{x: \rho_{\theta}(x) \neq g_{\theta}(T(x)) \cdot h(x)\right\}\right)=0$
[Avoids counterexamples from changing $\rho_{\theta}\left(x_{0}\right)$ some θ_{0}, x_{0}]

Rigorous proof in Keener 6.4

Proof (discrete X): Assume wog $\mu=\#$ on X

$$
\begin{aligned}
\left(\Longleftrightarrow \mathbb{P}_{\theta}(X=x \mid T=t)\right. & =\frac{\mathbb{P}_{\theta}(X=x, T(x)=t)}{\mathbb{P}_{\theta}(T(x)=t)} \\
& =\frac{g_{\theta}(t) h(x) 1\{T(x)=t\}}{\sum_{T(z)=t} g_{\theta}(t) h(z)}
\end{aligned}
$$

\Longleftrightarrow Assume $T(x)$ sufficient.

$$
\text { Take } \begin{aligned}
g_{\theta}(t) & =\sum_{T(x)=t} p_{\theta}(x) \\
& =\mathbb{P}_{\theta}(T(x)=t)
\end{aligned}
$$

For any $\theta_{0} \in \Theta$, let

Then,

$$
\begin{aligned}
& h(x)=P_{\theta_{0}}(x) / \sum_{T(z)=T(x)} \rho_{\theta_{0}}(z) \\
&=\mathbb{P}_{\theta}(x=x \mid T(x)=T(x)) \\
& K_{\text {no dep. on } \theta}
\end{aligned}
$$

$$
\begin{aligned}
g_{\theta}(T(x)) h(x) & =\mathbb{P}_{\theta}(T=T(x)) \mathbb{P}(X=x \mid T=T(x)) \\
& =\mathbb{P}_{\theta}(X=x)
\end{aligned}
$$

Interpretations of Sufficiency
X is informative about θ only because its distribution depends on θ.

We can think of the data as being generated in two stages:

1) Generate T : distribution dep on θ
2) Generate XIT: does not dep on θ

Sufficiency Principle
If $T(x)$ is sufficient for P then any
only through $T(x)$
In fact, we could throw away X and generate a new $\tilde{X} \sim P_{n}(X \mid T)$ and it would be just as good as X since $\tilde{X} \sim P_{\theta}$
In graphical model form:

Examples
Ex. Exponential Families

Ex. Uniform location family

$$
\begin{aligned}
x_{1}, \ldots, x_{n} & \stackrel{i i d}{ } U[\theta, \theta+1] \\
& =1\{\theta \leq x \leq \theta+1\} \\
\rho_{\theta}(x) & =\prod_{i=1}^{n} 1\left\{\theta \leq x_{i} \leq \theta+1\right\} \\
& =1\left\{\theta \leq x_{(1)}\right\} 1\left\{x_{(n)} \leq \theta+1\right\}
\end{aligned}
$$

$\Rightarrow\left(X_{(1)}, X_{(n)}\right)$ is sufficient.

Order Statistics / Empirical Distribution

Ex. $X_{1}, \ldots, X_{n} \stackrel{\text { iid }}{\sim} P_{\theta}^{(1)}$ for any model $\rho^{(1)}=\left\{P_{\theta}^{(1)}: \theta \in \Theta\right\}$ on $X \leq \mathbb{R}$
P_{θ} is invariant to perms of $X=\left(x_{1}, \ldots, x_{n}\right)$
\Rightarrow All permutations of x are equally likely
\Rightarrow order statistics $\left(X_{(i)}\right)_{i=1}^{n} \quad\left(x_{(t)}=k^{\text {th }}\right.$ smallest are sufficient. [Note $\left(X_{i}\right)_{i=1}^{n} \leadsto\left(X_{(i)}\right)_{i=1}^{n}$ loses information, specifically the orig. ordering]

For more general X we can say the empirical distribution $\quad \hat{P}_{n}(\cdot)=\frac{1}{n} \sum_{i=1}^{n} \delta_{x_{i}}(\cdot)$ is sufficient, where $\delta_{x_{i}}(A)=1\left\{x_{i} \in A\right\}$

$$
\hat{P}_{n}(A)=\frac{3}{5}
$$

$[$ Not
important that it's a context; just keeps track of which values came up how many times]

Minimal Sufficiency
Consider $\quad X_{1}, \ldots, X_{n}$ iid $N(\theta, 1)$

$$
\rho_{\theta}^{(1)}(x)=\frac{1}{\sqrt{2 \pi}} e^{\theta x-\theta^{2} / 2-x^{2} / 2}
$$

exponential family with $T(x)=x$

$$
\begin{aligned}
& T(x)=\sum x_{i} \quad \text { sufficient } \\
& \bar{X}=\frac{1}{n} \sum x_{i} \quad \text { also } \\
& S(x)=\left(x_{(1)}, \ldots, x_{(n)}\right) \text { too } \\
& x=\left(x_{1}, \ldots, x_{n}\right) \quad \text { too }
\end{aligned}
$$

Which can be recovered from which others?

THese can bc compressed 7 further
$\sum X_{i} \longleftrightarrow \bar{X} \longleftarrow$ These are the most compressed as possible?

Prop If $T(x)$ is sufficient and $T(x)=f(s(x))$ then $S(x)$ is sufficient

Proof :

$$
\begin{aligned}
\rho_{\theta}(x) & =g_{\theta}(T(x)) h(x) \\
& =\left(g_{\theta} \circ f\right)(s(x)) h(x)
\end{aligned}
$$

Definition: $T(X)$ is minimal sufficient if

1) $T(x)$ is sufficient
2) For any other sufficient $S(x)$, $T(x)=f(s(x))$ for some f (ass. in P)

So, no matter how many more suff. stats we ald to our diagram, they will all have arrows pointing to $\sum x_{i}$

Likelihood Shape is Minimal

Definition
Assume $\mathcal{P}=\left\{P_{\theta}: \theta \in \Theta\right\}$ has densities $\rho_{\theta}(x)$ The likelihood function is the (random) function

The log-likelihood function is its log:

$$
l(\theta ; x)=\log \operatorname{Lik}(\theta ; x)
$$

The likelihood up to scaling (or l up to vertical shift) is a minimal sufficient statistic

If $T(X)$ is sufficient then

$$
\operatorname{Lik}(\theta ; x)=\underbrace{\operatorname{Li}_{\theta}(T(x))}_{\substack{\text { determines the } \\ \text { "shape" }}} \underbrace{h(x)}_{\text {scaling }}
$$

HW 2 : Likelihood ratios $\left(\frac{L_{i k}\left(\theta_{1} ; x\right)}{\operatorname{cit}_{1}\left(\theta_{2} ; x\right)}\right)_{\theta_{1}, \theta_{2} \in \Theta}$ minimal snuff.

Recognizing Minimal Sufficient Statistics
$T(X)$ is minimal sufficient if

1) $T(x)$ is sufficient
2) $T(x)$ can be recovered from the likelihood shape

Keener Thy 3.ll formalizes condition 2

$$
\text { "Like }(\cdot ; x) \propto \operatorname{Lik}(\cdot ; y) \Rightarrow T(x)=T(y) "
$$

equivalently.

$$
" \ell(\cdot ; x)-\ell(\cdot ; y)=\text { const }(x, y) \Rightarrow T(x)=T(y)
$$

Ex Laplace location family

$$
\begin{aligned}
& X_{1}, \ldots, x_{n} \stackrel{\text { id }}{\sim} \rho_{0}^{(1)}(x)=\frac{1}{2} e^{-|x-\theta|} \\
& l(\theta ; x)=-\sum_{i=1}^{n}\left|x_{i}-\theta\right|-n \log 2
\end{aligned}
$$

Piecewise linear in θ, knots at $x_{(i)}$

$$
\begin{align*}
& \text { On }\left[x_{(k)}, x_{(k+1)}\right], \\
& \text { Slope }=n-2 k
\end{align*}
$$

$$
l(\theta ; X)=l(\theta ; y)+\text { const } \Leftrightarrow X, y \underset{\text { same order }}{\text { statistics }} \boldsymbol{\text { sit }}
$$

\Rightarrow order stats are minimal suff.

Minimal sufficiency for exp. fam.s
Suppose $\rho_{\xi}(x)=e^{\eta^{\prime} T(x)-A(\xi)} h(x)$

$$
l(\eta ; x)=\underbrace{T(x)^{\prime} \xi}_{\substack{\text { random linear } \\
\text { function of } \eta}}-\underbrace{A(\xi)}_{\begin{array}{c}
\text { deterministic } \\
\text { function of } \xi
\end{array}}+\underbrace{\log h(x)}_{\text {(random) const. }}
$$

Is $T(x)$ minimal? (always sufficient)
Suppose x and y give same likelihood shape:

$$
\ell(\xi ; x)-\ell(\xi ; y)=\text { const }(x, y)
$$

Then $(T(x)-T(y))^{\prime} z=$ canst $(x, y) \quad$ for $\quad z \in \Xi$

$$
\begin{aligned}
& \Rightarrow \quad T(x)=T(y) \text { or } \\
& \quad T(x)-T(y) \perp \operatorname{span}\left\{\xi_{1}-\xi_{2}: \eta \in \Xi\right\}
\end{aligned}
$$

If $S_{p a n}\{\cdots\}=\mathbb{R}^{s}, \quad T(X)$ is minimal (That is, if \exists is not contained in a lower-dim affine space)

Otherwise might not be:
If $s=2, \Xi=\left\{\binom{\theta}{0}: \theta \in \mathbb{R}\right\}$ then $T_{1}(x)$ minimal
[Can we conclude $T(x)$ is not minimal?]

Other parameterizations:

$$
\rho_{\theta}(x)=e^{i(\theta) T(x)-B(\theta)} h(x) \quad \theta \in \Theta
$$

$T(X)$ minimal if $\operatorname{span}\left\{\eta\left(\theta_{1}\right)-\xi\left(\theta_{2}\right): \theta_{1}, \theta_{2} \in \Theta\right\}=\mathbb{R}^{5}$

