
Stats 210A, Fall 2023
Homework 9

Due date: Thursday, Nov. 2
Instructions: As usual.

1. Fisher’s exact test
Suppose Xi ∼ Binom(ni, πi) independently for i = 0, 1 and π0, π1 ∈ (0, 1). Consider testing H0 :
π1 ≤ π0 vs. H1 : π1 > π0.

(a) A natural object of inference in this model is the odds ratio:

ρ =
π1/(1− π1)
π0/(1− π0)

.

Write the model in exponential family form with θ = log ρ as one of the natural parameters, and
reframe H0 as an equivalent hypothesis about θ.

(b) Find the UMPU level-α test of H0, giving the cutoffs c(u), γ(u) in terms of solutions to integral
equalities for a hypergeometric distribution.

(c) Suppose n0 = n1 = 40, X0 = 18 and X1 = 7. Give a 95% confidence interval for the odds
ratio ρ by numerically inverting the two-sided, equal-tailed, conditional test of H0 : ρ = ρ0 vs.
H1 : ρ 6= ρ0. Don’t randomize the interval, just return the conservative non-randomized interval.
(Hint: it is equivalent to set up the problem in terms of θ, and may be a little easier to think about
that way.)

Note: Fisher’s exact test is almost certainly the most important non-Gaussian example of a UMPU test
with nuisance parameters, and has been used in countless clinical trials and observational studies. For
example, we might give n1 cardiac disease patients a new drug and give n0 a placebo, then observe how
many patients in each group suffer a heart attack within the next 5 years.

2. Comparing variances
Consider testing H0 : σ2 ≤ τ2 vs. H1 : σ2 > τ2 in the two-sample Gaussian model with

X1, . . . , Xn
i.i.d.∼ N(µ, σ2), Y1, . . . , Ym

i.i.d.∼ N(ν, τ2),

where X is independent of Y and all parameters are unknown.

Define the sample mean and sample variance as

X =
1

n

n∑
i=1

Xi, S2
X =

1

n− 1

n∑
i=1

(Xi −X)2,

and define Y and S2
Y analogously.

(a) Show that S2
X/S

2
Y ∼ Fn−1,m−1 if σ2 = τ2 (i.e., on the boundary of the null).

(b) Show that the test that rejects for large values of S2
X/S

2
Y is UMPU (Hint: it may be helpful to recall

thatX,S2
X , Y , and S2

Y are mutually independent by Basu’s theorem, and that (n− 1)S2
X = ‖X‖2 − nX2

.)
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3. One-sample t-interval
If Z ∼ N(0, 1) and V ∼ χ2

d with Z, V independent, we say that T = Z/
√
V/d follows a Student’s t

distribution with d degrees of freedom, denoted by T ∼ td. Note that T 2 ∼ F1,d but T preserves sign
information in case we want to do one-sided tests.

Now suppose X1, . . . , Xn
i.i.d.∼ N(µ, σ2) with σ2 > 0 unknown and consider testing H0 : µ = µ0 vs.

H1 : µ 6= µ0.

We showed in class that the one-sided UMPU test for H0 : µ ≤ 0 vs. H1 : µ > 0 rejects for large
values of TX = X

√
n√

S2
X

, where S2
X is defined as in Problem 2.

(a) Show that TX ∼ tn−1 if µ = 0 (see hint for previous problem).

(b) To test H0 : µ = 0 vs. H1 : µ 6= 0, show that the UMPU test rejects for large values of |TX |
(Hint: the simplest way is to use symmetry).

(c) Find a UMPU test of H0 : µ = µ0 for a generic µ0 ∈ R, and invert to find a confidence interval
for µ in terms of X , S2

X , quantiles of the tn−1 distribution, and the desired level α (Hint: consider
the distribution of Xi − µ0).

4. McNemar’s test
Suppose we have paired binary data: for i = 1, . . . , n we observe (Xi, Yi) ∈ {0, 1}2. The pairs are i.i.d.
with

P [(Xi, Yi) = (a, b)] = πa,b a, b ∈ {0, 1}.

Write πX = P(Xi = 1) = π1,0+π1,1 and πY = P(Yi = 1) = π0,1+π1,1, and letNa,b =
∑n

i=1 1{Xi =
a, Yi = b}.

(a) Find the UMPU test of H0 : πX ≤ πY vs. H1 : πX > πY , giving the cutoffs c(u), γ(u) in terms
of solutions to integral equalities for a binomial distribution. (Hint: it may help to first reframe the
hypothesis in terms of the πa,b parameters.)

(b) Suppose N0,0 = N1,1 = 1000, N0,1 = 5 and N1,0 = 25. Compute 95% confidence intervals for
πX and πY (invert the two-sided equal-tailed test but without randomizing). Then compute a p-
value for H0 : πX ≤ πY (do not randomize). Does anything about the respective answers surprise
you?

(Note: This test is called McNemar’s test; it is very useful for clinical trials with matched pairs of
subjects, and also for comparing the performance of different classifiers on a held-out sample.)

Moral: When we have paired data, we can often make much more precise comparisons between two
distributions; even more precise than our ability to infer things about either of the distributions individu-
ally. This is often worth taking into account if we are designing an experiment: for example, if we match
patients into pairs on demographic characteristics and then randomize a treatment/placebo assignment
within each pair, we may get a very good inference about whether the treatment is better than the placebo,
much better than we would get if we randomly assigned all 2n subjects independently of each other.

5. Nonparametric tests
In this problem you will design tests for two nonparametric hypothesis testing problems. There is nec-
essarily some wiggle room in how you choose the test statistic, and it will probably not be possible to
determine the cutoff explicitly. Just choose a reasonable one, define the cutoff in terms of a quantile of a
well-defined distribution, and show that your test has significance level α.

(a) Suppose X1, . . . , Xn ∈ R are independent random variables with Xi ∼ Pi. Consider testing the
null hypothesis H0 : P1 = P2 = · · · = Pn (i.e., the observations are i.i.d.) against the alternative
that there is a systematic trend toward larger values of Xi as i increases (this is sometimes called a
test of trend). Design a level-α test.
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(b) Suppose (X1, Y1), . . . , (Xn, Yn)
i.i.d.∼ P where P is an unknown joint distribution on R2. Consider

testing the null hypothesis that Xi and Yi are independent within each pair (i.e., P = PX × PY ,
with PX and PY unknown and not necessarily the same) versus the alternative that (Xi, Yi) are
positively correlated within each pair. Design a level-α test.

Note that the alternative is defined a little vaguely in each part above. If that troubles you, we could
formally take the alternative be “Pi are arbitrary but not all equal” in part (a), or “P 6= PX ×PY ” in part
(b). The alternative hypotheses as I’ve defined them informally are meant to suggest which alternatives
to prioritize when you design your test.

Moral: We can often design our own nonparametric tests by conditioning on an appropriate sufficient
statistic for the null distribution.
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