Stats 210A, Fall 2023 Homework 8

Due date: Wednesday, Oct. 25

1. Directional error claims

Suppose $\mathcal{P} = \{P_{\theta} : \theta \in \mathbb{R}\}$, and T(X) is a continuous test statistic that is stochastically increasing in θ , meaning

 $\mathbb{P}_{\theta_1}(T(X) \leq t) \leq \mathbb{P}_{\theta_0}(T(X) \leq t), \quad \text{ for all } t \in \mathbb{R} \text{ and } \theta_1 > \theta_0.$

As we have discussed in class, this property guarantees that a one-tailed test of H_0 : $\theta \le 0$ vs. H_1 : $\theta > 0$ that rejects for large values of T(X), with cutoff c chosen to solve $\mathbb{P}_0(T(X) > c) = \alpha$, will give a valid level- α test over the whole null distribution.

Now let $\phi(X)$ represent any level- α two-tailed test of H_0 : $\theta = 0$ vs. H_1 : $\theta \neq 0$ that rejects for extreme values of T(X).

Assume that we also always make a *directional claim* about $sign(\theta)$ whenever we reject H_0 . That is, we make one of *three* decisions: if $T(X) \in [c_1, c_2]$ then we do not reject H_0 (and we make no claim about the sign of θ); if $T(X) > c_2$, then we reject H_0 and claim further that $\theta > 0$; and if $T(X) < c_1$, then we reject H_0 and claim further that $\theta < 0$. So now there are two kinds of Type I errors we could make: we could reject H_0 when it is really true, *or* we could reject H_0 when it is really false but call the sign wrong. Show that we have control of the *directional error rate*:

 $\sup_{\theta \in \mathbb{R}} \mathbb{P}_{\theta}(\text{False rejection or wrong sign call}) \leq \alpha$

Moral: Having MLR or exponential families are nice to be able to talk about optimal tests, but stochastically increasing is a useful condition for getting valid tests in various contexts.

In particular, people often complain that we do not learn anything about θ by rejecting H_0 : $\theta = 0$, because we should have already known θ was not exactly zero. This line of argument ignores the fact that (in most testing settings) we can also draw a definite conclusion about the sign of θ whenever we reject H_0 : $\theta = 0$, without inflating the error rate.

2. Some two-tailed tests

Consider testing H_0 : $\theta = \theta_0$ vs H_1 : $\theta \neq \theta_0$ in a one-parameter exponential family of the form $p_{\theta}(x) = e^{\theta T(x) - A(\theta)}h(x)$. We stated in class that among all *unbiased*, *level*- α tests, the one that rejects for extreme (i.e., large or small) values of T(X) is uniformly most powerful (simultaneously maximizes power for all alternatives).

The equal-tailed level- α test that rejects for extreme values of T(X) does not satisfy as interesting an optimality property but it is also a competitive test. Depending on the distribution, the equal-tailed test and the UMPU test may or may not coincide.

Numerically find the equal-tailed and UMPU test for the following hypothesis testing problems at level $\alpha = 0.05$. For each problem,

- (i) derive the appropriate tests (leaving the cutoff values abstract),
- (ii) numerically compute the cutoff values c (no γ necessary since these are continuous problems), and

- (iii) invert the equal-tailed test to give an interval for the data value specified (no need to invert the unbiased test).
- (a) $X_i \stackrel{\text{ind.}}{\sim} N(\theta, \sigma_i^2)$ for i = 1, ..., n, where σ_i^2 are known positive constants and $\theta \in \mathbb{R}$ is unknown. Test $H_0: \theta = 0$ vs. $H_1: \theta \neq 0$, with n = 20 and $\sigma_i^2 = i$. On your power plot, also plot the power function of the (sub-optimal) test that rejects for extreme values of $\sum_i X_i$.
- (b) X₁,..., X_n ~ Pareto(θ) = θx^{-(1+θ)}, for θ > 0 and x > 1 (also called a power law distribution). Test H₀: θ = 1 vs. H₁: θ ≠ 1, for n = 100. On your power plot, also plot the power function of the (sub-optimal) test that rejects for large ∑_i X_i.

3. Maximizing average power

In situations where there is not a UMP test, we cannot simultaneously maximize power for all alternatives. However, if the null is simple ($\Theta_0 = \{\theta_0\}$) and we have a prior Λ_1 over the alternative parameter space Θ_1 , we can maximize average power by rejecting for large values of:

$$T(x) = \frac{\int_{\Theta_1} p_{\theta}(x) \, \mathrm{d}\Lambda_1(\theta)}{p_{\theta_0}(x)}$$

Show that this test maximizes the average-case power $\int_{\Theta_1} \mathbb{E}_{\theta} \phi(X) d\Lambda_1(\theta)$ among all tests with level α . **Hint:** Show that it can be viewed as a Neyman-Pearson test for a particular simple alternative.

4. p-value densities

Suppose \mathcal{P} is a family with monotone likelihood ratio in T(X), and the distribution of T(X) is continuous with common support for all θ . Let ϕ_{α} denote the UMP level- α test of $H_0: \theta \leq \theta_0$ vs. $H_0: \theta > \theta_0$ that rejects when T(X) is large. Let p(X) denote the resulting *p*-value. Show that $p(X) \sim \text{Unif}[0, 1]$ if $\theta = \theta_0$, has non-increasing density on [0, 1] if $\theta > \theta_0$, and has non-decreasing density on [0, 1] if $\theta < \theta_0$.

Note: As always there is some ambiguity in how we could define the density; to resolve this ambiguity note it is equivalent to show that the CDF is linear, concave, or convex, or you can define the density unambiguously as the derivative of the CDF.