
Stats 210A, Fall 2023
Homework 7

Due date:Thursday, Oct. 19
Instructions: The same standing instructions are in effect as in previous weeks.

1. MLR and location families

(a) Assume X ∼ pθ(x) = p0(x− θ), a location family with p0 continuous and strictly positive. Show
that the family has MLR in x if and only if log p0 is concave.
Note: For full credit, you should not assume that p0 is differentiable.
Hint 1: It may help to recall that f(x) is convex if and only if

R(x1, x2) =
f(x1)− f(x2)

x1 − x2

is non-decreasing in x1 and x2.
Hint 2: It may also help to recall that a continuous function f is convex if and only if it is midpoint
convex meaning

f

(
x1 + x2

2

)
≤ f(x1) + f(x2)

2
, for all x1, x2.

(b) Consider testing in the Cauchy location family:

pθ(x) =
1

π(1 + (x− θ)2)
.

Let θ0, θ1 be any two real numbers with θ1 > θ0 and consider the LRT for testing H0 : θ = θ0

vs H1 : θ = θ1 at some level α ∈ (0, 1). Show that for some α∗(θ0, θ1), the rejection region for
any α < α∗ is a bounded interval, and the rejection region for any α > α∗ is a union of two half
intervals. Find α∗.
Hint: recall that d

dx arctan(x) = 1
1+x2 .

(c) In the Cauchy location family, prove that, for any α ∈ (0, 1), there exists no UMP level-α test of
H0 : θ = 0 vs. H1 : θ > 0.

(d) Consider testing H0 : θ = 0 vs. H1 : θ = 6 in the Cauchy location family at level α = 0.01.
Numerically calculate the rejection region and the power for the LRT, and also for the one-tailed
test that rejects for large values of X .

(e) Optional: (not graded, no extra points) In words, can you explain why the optimal LRT rejection
regions for the Cauchy distribution take this odd form? Think about how you would explain to a
scientific collaborator why you are proposing such an odd test, beyond “it fell out of an optimization
problem.”

Moral: When we think carefully about how to design rejection regions, we can get surprising results. In
particular, for location families with heavy tails, extreme values are not that informative for distinguishing
between two smaller values of the location parameter. Concretely, X = 106 doesn’t help us distinguish
between θ1 = 1 vs. θ0 = 0. By contrast, if the tails are lighter (log p0 concave implies the density shrinks
at least exponentially) then more extreme X values always give stronger evidence for distinguishing
between any two parameter values; this is what MLR means.
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2. Some UMP tests

Numerically find the UMP test for the following hypothesis testing problems at level α = 0.05. For each
problem,

(i) derive the appropriate test on paper,

(ii) numerically compute the cutoff value c (and γ if necessary), and

(iii) plot the power function of the level-α test for an appropriate range of parameter values.

(a) Xi
ind.∼ Pois(aiλ) for i = 1, . . . , n, where a1, . . . , an are known positive constants and λ > 0 is

unknown. Test H0 : λ = 1 vs. H1 : λ > 1, with n = 5 and ai = i.

(b) Xi
ind.∼ N(θ, σ2

i ) for i = 1, . . . , n, where σ2
i are known positive constants and θ ∈ R is unknown.

Test H0 : θ = 0 vs. H1 : θ > 0, with n = 20 and σ2
i = i. On your power plot, also plot the

power function of the (sub-optimal) test that rejects for large
∑
iXi.

(c) X1, . . . , Xn
i.i.d.∼ Pareto(θ) = θx−(1+θ), for θ > 0 and x > 1 (also called a power law distribution).

Test H0 : θ = 1 vs. H1 : θ < 1, for n = 100. On your power plot, also plot the power function
of the (sub-optimal) test that rejects for large

∑
iXi.

Moral: Once again, when we use the right test we often can deliver noticeably better power than if we
chose an ad hoc test.

3. Uniform UMP test
We usually can’t get a UMP two-sided test, but this problem gives an amusing counterexample where it
is possible. Let X1, . . . , Xn

i.i.d.∼ Unif[0, θ] for θ > 0.

(a) Consider the problem of testing H0 : θ = θ0 versus H1 : θ > θ0. Show that any test φ for which
φ(x) = 1 when x(n) = max{x1, . . . , xn} > θ0 is UMP at level α = Eθ0 [φ(X)].

(b) Now consider the problem of testing H0 : θ = θ0 against H1 : θ 6= θ0. Show that a unique UMP
level-α test exists, and is given by

φ(x) = 1
{
x(n) > θ0 or x(n) < θ0α

1/n
}

4. Bayesian hypothesis testing
Consider a univariate Gaussian problem with X | θ ∼ N(θ, 1), where θ = 0 under the null hypothesis
and θ ∼ Λ1 under the alternative hypothesis (assume Λ1({0}) = 0). In addition let π0 denote the a
priori probability that the null hypothesis is true; therefore the full prior is a mixture between a point
mass at 0 and Λ1.

(a) Compute the posterior probability that the null hypothesis is true, i.e.

πpost(x; Λ1, π0) = P(θ = 0 | X = x).

(b) Assume π0 = 0.5 (we are initially agnostic between the null and the alternative), and find

π∗
post(x) = min

Λ1

πpost(x; Λ1, 0.5),

as a function of x, for x > 0. Give the minimizing prior Λ1, which also depends on x.
Note: This is not an optimization problem the analyst is going to solve: it is definitely not allowed
to choose the prior after seeing the data. Instead, think of a large and diverse population of analysts
who all have different priors before seeing the data, and therefore different posteriors after seeing
the data (but with the constraint that none of them are initially “biased” against the null). Then we
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as theoreticians are calculating a lower bound π∗
post for any of these analysts’ conditional belief in

the null: all of their posterior credences in the null will be at least π∗
post. So everyone has their own

prior but the only way someone could be really convinced that the null is false (more convinced
than 1− π∗

post) is if they already thought it was probably false before seeing the data.

(c) Now restrict Λ1 = N(0, τ2) for τ > 0, a class of more “realistic” priors. Compute πpost as a
function of τ2 and x. Find

π∗
post,N (x) = min

τ2>0
πpost(x;N(0, τ2), 0.5),

and give the minimizing value of τ2, both as functions of x, for x > 1.

(d) Now assume we observe a value ofX such that the two-sided p-value p(X) (i.e., p(x) = P0(|X| >
|x|)) takes the values 0.05, 0.01, 0.005, or 0.001. Numerically compute π∗

post and π∗
post,N for each

value and make a small table. In words, interpret the results.

Moral: p-values are commonly misinterpreted as representing “the probability that the null hypothesis
is true, given the data.” This is an Bayesian statement and it depends on our prior beliefs. In fact, as
this problem shows, even in a Bayesian setting, the p-value is generally not a good approximation for the
posterior probability that the null is true.

5. Mean estimation

(a) Suppose X1, . . . , Xn
i.i.d.∼ Nd(θ, Id) and consider estimating θ ∈ Rd. Show that X = 1

n

∑
iXi is

the minimax estimator of θ under squared error loss.
Hint: Find a least favorable sequence of priors.

(b) SupposeX1, . . . , Xn
i.i.d.∼ P where P is any distribution over the real numbers such that VarP (X) ≤

1. Show that X = 1
n

∑
iXi is minimax for estimating θ(P ) = EPX under the squared error loss.

Hint: Try to relate this problem to the Gaussian problem with d = 1.

(c) AssumeX ∼ N(θ, 1) with the constraint that |θ| ≤ 1. Show that the minimax estimator for squared
error loss is

tanh(x) =
ex − e−x

ex + e−x
.

Plot its risk function.
Hint: Plot the risk function first. For this problem if you need to show that a function is maximized
or minimized somewhere, you may do it numerically or by inspecting a graph if it is obvious
enough.
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