
Stats 210A, Fall 2023

Homework 6

Due date: Wednesday, Oct. 11

You may disregard measure-theoretic niceties about conditioning on measure-zero sets, almost-
sure equality vs. actual equality, “all functions” vs. “all measurable functions,” etc. (unless the
problem is explicitly asking about such issues).

If you need to write code to answer a question, show your code. If you need to include a plot,
make sure the plot is readable, with appropriate axis labels and a legend if necessary. Points will
be deducted for very hard-to-read code or plots.

1. Effective degrees of freedom

We can write a standard Gaussian sequence model in the form

Yi = µi + εi, εi
i.i.d.∼ N(0, σ2), i = 1, . . . , n

with µ ∈ Rn and σ2 > 0 possibly unknown. If we estimate µ by some estimator µ̂(Y ), we
can compute the residual sum of squares (RSS):

RSS(µ̂, Y ) = ‖µ̂(Y )− Y ‖2 =

n∑
i=1

(µ̂i(Y )− Yi)2.

If we were to observe the same signal with independent noise Y ∗ = µ + ε∗, the expected
prediction error (EPE) is defined as

EPE(µ, µ̂) = Eµ
[
‖µ̂(Y )− Y ∗‖2

]
= Eµ

[
‖µ̂(Y )− µ‖2

]
+ nσ2.

Because µ̂ is typically chosen to make RSS small for the observed data Y (i.e., to fit Y well),
the RSS is usually an optimistic estimator of the EPE, especially if µ̂ tends to overfit. To
quantify how much µ̂ overfits, we can define the effective degrees of freedom (or simply the
degrees of freedom) of µ̂ as

DF(µ, µ̂) =
1

2σ2
E [EPE− RSS] ,

which uses optimism as a proxy for overfitting.

For the following questions assume we also have a predictor matrix X ∈ Rn×d, which is
simply a matrix of fixed real numbers. Suppose that d ≤ n and X has full column rank.

(a) Show that if µ̂ is differentiable with Eµ‖Dµ̂(Y )‖F <∞ then

n∑
i=1

∂µ̂i(Y )

∂Yi

is an unbiased estimator of the DF. (Recall Dµ̂(Y ) is the Jacobian matrix from class).

(b) Suppose µ̂ = Xβ̂, where β̂ is the ordinary least squares estimator (i.e., chosen to
minimize the RSS). Show that the DF is d. (This confirms that DF generalizes the
intuitive notion of degrees of freedom as “the number of free variables”).
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(c) Suppose µ̂ = Xβ̂, where β̂ minimizes the penalized least squares criterion:

β̂ = arg min
β
‖Y −Xβ‖22 + ρ‖β‖22,

for some ρ ≥ 0. Show that the DF is
∑d
j=1

λj

ρ+λj
, where λ1 ≥ · · · ≥ λd > 0 are the eigen-

values of X ′X (counted with multiplicity) (Hint: use the singular value decomposition
of X).

2. Soft thresholding

Consider the soft thresholding operator with parameter λ ≥ 0, defined as

ηλ(x) =


x− λ x > λ

0 |x| ≤ λ
x+ λ x < −λ

Note that, although we didn’t prove it in class, Stein’s lemma applies for continuous functions
h(x) which are differentiable except on a measure zero set; you can apply it here without
worrying.

Assume X ∼ Nd(θ, Id) for θ ∈ Rd, which we will estimate via δλ(X) = (ηλ(X1), . . . , ηλ(Xd)).
Soft thresholding is sometimes used when we expect sparsity: a small number of relatively
large θi values. λ here is called a tuning parameter since it determines what version of the
estimator we use, but doesn’t have an obvious statistical interpretation.

(a) Show that |{i : |Xi| > λ}| is an unbiased estimator of the degrees of freedom of δλ (so,
in a sense, the DF is the expected number of “free variables”).

(b) Show that

d+
∑
i

min(X2
i , λ

2)− 2 |{i : |Xi| ≤ λ}|

is an unbiased estimator for the MSE of δλ.

(c) Show that the risk-minimizing value λ∗ solves

λ
∑
i

Pθi(|Xi| > λ) =
∑
i

φ(λ− θi) + φ(λ+ θi),

where φ(z) = e−z2/2
√

2π
is the standard normal density.

(d) Consider a problem with θ1 = · · · = θ20 = 10 and θ21 = · · · = θ500 = 0. Compute
λ∗ numerically. Then simulate a vector X from the model and use it to automatically
tune the value of λ by minimizing SURE. Call the automatically tuned value λ̂(X)

and report both λ∗ and λ̂(X). Finally plot the true MSE of δλ along with its SURE
estimate against λ for a reasonable range of λ values. Add a horizontal line for the risk
of the UMVU estimator.

(e) Compute and report the squared error loss ‖δ(X)−θ‖2 for the following four estimators:

(i) the UMVU estimator δ0(X) = X,

(ii) the optimally tuned soft-thresholding estimator δλ∗(X),

(iii) the automatically tuned soft-thresholding estimator δλ̂(X)(X), and

(iv) the James-Stein estimator.

You do not need to compute the MSE. Intuitively, what do you think accounts for the
good performance of soft-thresholding in this example?

3. Mean estimation
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(a) Suppose X1, . . . , Xn
i.i.d.∼ Nd(θ, Id) and consider estimating θ ∈ Rd. Show that X =

1
n

∑
iXi is the minimax estimator of θ under squared error loss.

Hint: Find a least favorable sequence of priors.

(b) Suppose X1, . . . , Xn
i.i.d.∼ P where P is any distribution over the real numbers such that

VarP (X) ≤ 1. Show that X = 1
n

∑
iXi is minimax for estimating θ(P ) = EPX under

the squared error loss.

Hint: Try to relate this problem to the Gaussian problem with d = 1.

(c) Assume X ∼ N(θ, 1) with the constraint that |θ| ≤ 1. Show that the minimax estimator
for squared error loss is

tanh(x) =
ex − e−x

ex + e−x
.

Plot its risk function.

Hint: Plot the risk function first. For this problem if you need to show that a function
is maximized or minimized somewhere, you may do it numerically or by inspecting a
graph if it is obvious enough.

4. James-Stein estimator with regression-based shrinkage

Consider estimating θ ∈ Rd in the model Y ∼ Nd(θ, Id). In the standard James-Stein
estimator, we shrink all the estimates toward zero, but it might make more sense to shrink
them towards the average value Y , or towards some other value based on observed side
information.

(a) Consider the estimator

δ
(1)
i (Y ) = Y +

(
1− d− 3

‖Y − Y 1d‖2

)(
Yi − Y

)
Show that δ(1)(Y ) strictly dominates the estimator δ(0)(Y ) = Y , for d ≥ 4.

MSE(θ; δ(1)) < MSE(θ; δ(0)), for all θ ∈ Rd.

Calculate the MSE of δ(1) if θ1 = θ2 = · · · = θd. How would it compare to the MSE for
the usual James-Stein estimator?

Hint: Change the basis using an appropriate orthogonal rotation and think about how
the estimator operates on different subspaces.

Hint: Recall that if Z ∼ Nd(µ,Σ) andA ∈ Rk×d is a fixed matrix thenAZ ∼ Nk(Aµ,AΣA′).

(b) Now suppose instead that we have side information about each θi, represented by fixed
covariate vectors x1, . . . , xd ∈ Rk. Assume the design matrix X ∈ Rd×k whose ith row
is x′i has full column rank. Suppose that we expect θ ≈ Xβ for some β ∈ Rk, but unlike
the usual linear regression setup, we will not assume θ = Xβ with perfect equality.

Find an estimator δ(2), analogous to the one in part (a), that dominates δ(0) whenever
d− k ≥ 3:

MSE(θ; δ(2)) < MSE(θ; δ(0)), for all θ ∈ Rd,

and for which MSE(Xβ; δ(2)) = k + 2, for any β ∈ Rk.

Hint: Think of this setting as a generalization of part (a), which can be considered a
special case with d = 1 and all xi = 1. What is the right orthogonal rotation?

Note: Don’t assume there is an additional intercept term for the regression; this could
always be incorporated into the X matrix by taking xi,1 = 1 for all i = 1, . . . , d.

5. Upper-bounding θ
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(a) Let X ∼ N(θ, 1) for θ ∈ R, and consider the loss function

L(θ, d) = 1{d < θ};

that is, we observe X and try to come up with an upper bound δ(x) ∈ R for θ. Show
that the minimax risk is 0 (note you may not be able to find a minimax estimator).

(b) Now, consider a problem with the same loss function but without observing any data.
Show the minimax risk (considering both randomized and non-randomized estimators)
is 1, but the Bayes risk rΛ = 0 for any prior Λ (note there may be no estimator δΛ that
attains the minimum Bayes risk).

(Note: This problem exhibits a “duality gap” where the lower bounds we can get by
trying different priors will always fall short of the minimax risk.)

(c) Optional (not graded, no extra points): Now consider the same loss function, but now
X ∼ N(θ, σ2) and σ2 is unknown too. Find the minimax risk.

Hint: consider estimators of the form δ(X) = c|X|.
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