
Stats 210A, Fall 2023
Homework 5

Due date: Wednesday, Oct. 4
You may disregard measure-theoretic niceties about conditioning on measure-zero sets, almost-sure

equality vs. actual equality, “all functions” vs. “all measurable functions,” etc. (unless the problem is
explicitly asking about such issues).

If you need to write code to answer a question, show your code. If you need to include a plot, make sure
the plot is readable, with appropriate axis labels and a legend if necessary. Points will be deducted for very
hard-to-read code or plots.

1. Admissibility and Bayes estimators
One of the frequentist motivations for Bayes estimators is their connection to admissibility.

(a) Suppose that the Bayes estimator δΛ for the prior Λ is unique up to P-almost-sure equality. That
is, for any other Bayes estimator δ̃Λ, we have δΛ(X) = δ̃Λ(X) almost surely, for every Pθ ∈ P .
Show that δΛ is admissible.

(b) Now suppose that Θ is discrete (possibly countably infinite) and Λ is a probability distribution
putting positive mass on every value θ ∈ Θ. Show that any Bayes estimator with finite Bayes
risk is admissible.

(c) A randomized estimator is an estimator that is a random function of the data. We can formalize
it generically as δ(X,W ) where X ∼ Pθ as usual and W is some auxiliary random variable
generated by the analyst. For this part, “admissible” and “Bayes” are defined with respect to all
estimators including randomized ones.
Now consider a model with a finite parameter space, |Θ| = n <∞ and assume we are estimating
some real-valued g(θ) using a bounded non-negative loss L : Θ×R→ [0,∞). Show that every
admissible estimator is a (possibly randomized) Bayes estimator for some prior.
Hint: consider the setA of all achievable risk functions, and the setDδ of all (possibly unachiev-
able) risk functions that would dominate a given estimator δ. Recall the hyperplane separation
theorem: for any two disjoint non-empty convex subsets A,B ⊆ Rn there exist c ∈ R and
nonzero λ ∈ Rn such that λ′a ≥ c ≥ λ′b for all a ∈ A, b ∈ B. It might help to draw pictures
for n = 2.

Moral: Minimizing average-case risk is closely related to admissibility.

2. MCMC algorithms
This problem considers MCMC sampling from a generic posterior density λ(θ | x) where θ ∈ Rd.

(a) The Metropolis–Hastings algorithm is a Markov chain using the following update rule: First,
sample ζ ∼ f(· | θ(t)) according to some “proposal distribution” f(ζ | θ) : Θ × Θ → (0,∞),
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where f(· | θ) is a probability density for each θ (assume λ and f(· | θ) are densities w.r.t. the
same dominating measure). Next, compute the “accept probability” as

a(ζ | θ) = min

{
1,

λ(ζ | X)

λ(θ | X)

f(θ | ζ)

f(ζ | θ)

}
.

Finally, let θ(t+1) = ζ with probability a(ζ | θ(t)) and θ(t+1) = θ(t) with probability 1 − a(ζ |
θ(t)). Show that λ(θ | X) is stationary for the Metropolis–Hastings algorithm.

(b) Consider the version of the Gibbs sampler that updates a single random index J (t+1) ∼ Unif{1, . . . , d}
at each step, so

θ
(t+1)
j =

{
ζ

(t+1)
j if j = J (t+1)

θ
(t)
j if j 6= J (t+1)

,

with
ζ

(t+1)
j | θ(t) ∼ λ(θj | θ\j = θ(t), X),

where λ above is the conditional density for the jth coordinate of θ given the others, and the data,
in the full Bayes model. Show that this algorithm is a special case of the Metropolis–Hastings
algorithm.

Note: The Metropolis-Hastings algorithm is computationally attractive because we can can always
implement it using only the unnormalized posterior pθ(X)λ(θ) (or any function g(θ) that is propor-
tional to it), which is often much easier to compute than the normalized posterior.

3. Empirical Bayes for exponential families
Consider an s-parameter exponential family model in canonical form:

pθ(x) = eθ
′T (x)−A(θ)h(x)

where x = (x1, . . . , xn). We will consider a Bayes prior for the random vector θ with density λγ(θ),
which is itself parameterized by a hyperparameter γ ∈ Γ. We will consider an empirical Bayes
model where γ is fixed and θ and X are both random. Let λγ(θ | x) and qγ(x) denote the posterior
and marginal, respectively, for a given choice of γ, and Eγ represent expectations (or conditional
expectations) with respect to the joint distribution over θ and X .

Assume both Γ and the natural parameter space Ξ1 are open subsets of R and Rs, respectively. Assume
also that all relevant quantities are suitably differentiable and/or integrable, and that derivatives can
always be taken inside the integral sign.

(a) Show that for i = 1, . . . , n, we have

Eγ

 s∑
j=1

θj
∂Tj(x)

∂xi
| X = x

 =
∂

∂xi
log qγ(x)− ∂

∂xi
log h(x),

(b) Now assume we have n = s with T (x) = x:

pθ(x) = eθ
′x−A(θ)h(x).
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Let γ̂(X) denote the maximum likelihood estimator (MLE) of γ based on the observed data:

γ̂(X) = arg max
γ∈Γ

qγ(X),

which we assume always exists and is unique.
Show that the empirical posterior mean of θ, using γ̂ to estimate γ, is

Eγ̂ [θ | X = x] = ∇x
(
log qγ̂(x)(x)− log h(x)

)
Note: You should interpret Eγ̂ [·] as Eγ [·]

∣∣
γ=γ̂

, and qγ̂(x)(x) as qγ(x)
∣∣
γ=γ̂(x)

. Note that the
second expression depends on x in two places.

Moral: This gives easy-to-evaluate rules for calculating empirical Bayes estimators in simple expo-
nential family models.

4. Gamma-Poisson empirical Bayes
Consider the Bayes model with

θi
i.i.d.∼ Gamma(k, σ), i = 1, . . . , n

Xij | θi
ind.∼ Pois(θi), i = 1, . . . , n, j = 1, . . . ,m

Assume k > 0 (shape parameter) is known and σ > 0 (scale parameter) is unknown and estimated via
the MLE. In addition, assume

∑
ij Xij > 0 (though the formulae below would be basically correct in

a limiting sense if the sum were zero, too).

(a) If m = 1, show that the empirical Bayes posterior mean for θi is

X

X + k
(k +Xi1), where X = n−1

∑
i

Xi1.

You may use without proof the fact that the marginal distribution of Xi is negative binomial.

(b) For general m, show that the empirical Bayes posterior mean for θi is

X

X + k/m
(k/m+Xi), where Xi = m−1

∑
j

Xij and X = (nm)−1
∑
ij

Xij .

Hint: Make a sufficiency reduction and remember that σ is a scale parameter.

5. Gibbs Sampler for Gamma-Poisson model

Consider a hierarchical Bayes model instead, where

σ−1 ∼ Exp(1)

θi | σ
i.i.d.∼ Gamma(k, σ), i = 1, . . . , n

Xij | σ, θ
ind.∼ Pois(θi), i = 1, . . . , n, j = 1, . . . ,m
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where σ is a scale parameter, and k, n,m, are fixed and known.

Note: For parts (b) and (c) below, be sure to read the instructions on coding problems at the top of
this problem set.

(a) Give an explicit algorithm for one full iteration of the Gibbs sampler. It may be helpful to look
up the inverse gamma distribution on Wikipedia.

(b) Implement the Gibbs sampler in a programming language of your choice (R is recommended
since it is easy to draw random draws from standard distributions; Python or Matlab will prob-
ably also work fine). For k = m = 3 and n = 100, download the matrix X ∈ Rn×m,
in hw5.csv from the course website and implement the Gibbs sampler (the standard version
where you update all variables in every round; use 100 rounds of burn-in and take the next 10,000
rounds of sampling, without thinning). Make a trace plot of your draws from σ and θ1 and in-
clude them in your homework submission. Report the following three estimators of θ1, to three
significant digits:

(i) the hierarchical Bayes estimator (for squared error loss),
(ii) the empirical Bayes estimator from Problem 4, and

(iii) the UMVU estimator (in the model where θ is fixed and unknown).

(c) Next, carry out a Monte Carlo simulation to estimate the Bayes risk conditional on σ, for four
estimators: (i–iii) from part (b), plus the “oracle Bayes” estimator where the value of σ is known.
That is, for each estimator δ(`)

1 (X) of θ1, approximately evaluate:

R(`)(σ) = E[(δ
(`)
1 (X)− θ1)2 | σ] = E

[
n−1

∑
i

(δ
(`)
i (X)− θi)2 | σ

]
,

where the expectation is taken over θ and X (but not σ, since we are conditioning on that). The
second equality follows from the exchangeability over different values of i (you do not need to
prove it yourself, but you should use it to save yourself computation). Note: for the hierarchical
Bayes estimator, this does not mean you should hold σ fixed in your MCMC chain: you should
compute it just as you did in part (b). Use the values σ = 0.1, 0.2, 0.5, 1, 2, 5, 10 and include a
4× 7 table of risk values, each reported to at least 3 significant figures, in your answer.
For each of the three non-oracle estimators, plot the relative excess risk

R(`)(σ)

R(oracle)(σ)
− 1

against σ for the values above. Make an analogous plot for m = 30, n = 100 and another for
m = 3, n = 10. I recommend using a log scale for the horizontal and vertical axis but it is not
required.
Note: This exercise should not take you an absurd amount of computer time; using 100 MC runs
per value of σ and the 7 values of σ above, takes my three-year-old laptop computer less than
three minutes to produce each of the three plots requested above. If it is taking your computer
much much longer you are probably doing something very inefficiently.

(d) Optional: Why do your three plots look the way they do? What’s the moral of the story?
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