
Stats 210A, Fall 2023
Homework 4

Due date: Wednesday, Sep. 27
You may disregard measure-theoretic niceties about conditioning on measure-zero sets, almost-sure equal-

ity vs. actual equality, “all functions” vs. “all measurable functions,” etc. (unless the problem is explicitly
asking about such issues).

1. Bayesian law of large numbers

(a) Let p(x) and q(x) denote two strictly positive probability densities with respect to a common dom-
inating measure µ. The Kullback–Leibler divergence between p and q is defined as

D(p‖q) =

∫
X
p(x) log

p(x)

q(x)
dµ(x).

Show that D(p‖q) ≥ 0, with equality only in the case that p(X) = q(X) almost surely
Hint: recall that log(1 + x) ≤ x for all x > −1.

(b) Consider a dominated likelihood model P = {pθ(x) : θ ∈ Θ}, where the parameter space Θ
is a finite set, and the densities are strictly positive on X . Let λ denote a prior density w.r.t. the
counting measure on Θ, and consider the Bayes posterior after observing a sample X1, . . . , Xn

i.i.d.∼
pθ0(x) for some fixed value θ0 (that is, we are doing a frequentist analysis of the Bayesian posterior
distribution). Assume that all the densities are distinct; that is, pθ1(X) = pθ2(X) almost surely if
and only if θ1 = θ2.
If the prior λ puts positive mass on all values in Θ, show that as n → ∞, the posterior density
eventually concentrates nearly all its mass on the true value θ0. That is,

Pθ0 [λ(θ0 | X1, . . . , Xn) ≥ 1− ε]→ 1, for all ε > 0.

(Hint: use the law of large numbers).

Moral: At least for a finite parameter space, the Bayes estimator always converges to the right answer
as long as we put positive mass on the right answer. This result can be generalized with more effort to
continuous parameter spaces under some regularity conditions on the likelihood function, similar to the
types of conditions we will use to guarantee the MLE is consistent.

The requirement that the prior density should be nonzero everywhere is sometimes called Cromwell’s
Rule, after Oliver Cromwell’s famous plea to the Church of Scotland: “I beseech you, in the bowels of
Christ, think it possible that you may be mistaken.”

2. Fisher information for location and scale families

Consider a scale family

pθ(x) =
1

θ
p0

(x
θ

)
, θ > 0.

where p0 is some fixed probability density function with respect to the Lebesgue measure.
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(a) Show that the Fisher information of a single observation X is given by

J(θ) =
1

θ2

∫ ∞
−∞

[
up′0(u)

p0(u)
+ 1

]2
p0(u)du.

Try to explain in your own words why it makes sense that the Fisher information should be propor-
tional to θ−2 (the verbal explanation will be graded leniently).

(b) If we instead parameterize the model using ζ = log θ, show that the Fisher information J(ζ) of a
single observation X does not depend on ζ. Explain in your own words why this makes sense.

3. Ridge regression
Consider the Gaussian linear model where

yi = x′iβ + εi, with εi
i.i.d.∼ N(0, σ2) for i = 1, . . . n,

where β ∈ Rd is unknown, and the covariate vectors xi ∈ Rd are fixed and known. Assume the error
variance σ2 > 0 is also known. We observe the response vector y ∈ Rn.

(a) Assume that d ≤ n, and the design matrix X (the n×dmatrix whose ith row is x′i) has full column
rank. Show that the OLS estimator β̂ = (X′X)−1X′y is the UMVU estimator of β.
Note: Remember that the design matrix X is not data in the same sense y is; it is more like a known
parameter.

(b) Now consider Bayesian estimation with the prior β ∼ N(µ, τ2Id). Under the same prior as in
part (b), find the posterior distribution of β. Does it matter whether d > n, or whether X has full
column rank?

(c) Suppose that Xγ = 0 for some nonzero γ ∈ Rd. Show that no unbiased estimator exists for
g(β) = β′γ. What is the posterior distribution for g(β)?

4. Other loss functions
Assume for each problem below that there exists an estimator with finite Bayes risk.

(a) Consider a Bayesian model with a discrete parameter θ. What is the Bayes estimator for the loss
L(θ, d) = 1{θ 6= d}?

(b) Next consider a Bayesian model with a single real parameter θ, and assume that the posterior
distribution of θ given X = x is absolutely continuous (with respect to the Lebesgue measure) for
all x. What is the Bayes estimator for the absolute error loss L(θ, d) = |θ − d|?

(c) Under the same assumptions as part (b), what loss function Lγ(θ, d) would give the posterior γ
quantile as its Bayes estimator; that is, the estimator δγ(X) has P(θ < δγ(X) | X) = γ.

5. Exponential-exponential model
Consider a Bayesian model with prior distribution λ(θ) = e−θ1{θ > 0} for θ (the standard exponential
distribution) and whose likelihood is the exponential location family:

pθ(x) = eθ−x1{x > θ},

where we observe a sample X1, . . . , Xn
i.i.d.∼ pθ(x) given θ.

(a) Calculate the posterior distribution for θ for n > 1.

(b) For n = 1, calculate the posterior distribution and the Bayes estimator under squared error loss.

(c) Still for n = 1, calculate the MSE for the Bayes estimator and the UMVU estimator as a function
of θ. Plot the risk function for θ ∈ [0, 5]. For what values of θ does the Bayes estimator perform
better?
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(d) Still for n = 1, calculate the Bayes risk for the Bayes estimator, and for the UMVU estimator
X1 − 1, using squared error loss.

Moral: The Bayes estimator tends to have better risk in places where the prior is large, sometimes at the
cost of performing very poorly where the prior puts very little mass.

3


