
Stats 210A, Fall 2023
Homework 12

Optional

1. MLE consistency for concave log-likelihoods

Assume X1, X2, . . . , Xn
i.i.d.∼ pθ0(x) for some identifiable, dominated family with Θ = Rd. Assume addi-

tionally that `1(θ;Xi) = log pθ(Xi) is almost surely concave and continuously differentiable in θ, and that
for all compact sets K ⊆ Rd, we have

Eθ0
[

sup
θ∈K
‖∇`1(θ;X1)‖2

]
<∞.

Prove that the MLE is consistent: if θ̂n ∈ argmax `n(θ) then θ̂n
p→ θ0 (You may assume a maximizer always

exists; note we could always define θ̂n arbitrarily when there is none).

(Hint: The technique here is not just a small modification of what we used in our theorem from class for
consistency with non-compact Θ; it’s a different argument entirely. But similarly to what we did in class,
you should start by showing uniform convergence of Wn(θ) on compact K, and then deal with the rest of
Rd.)

Moral: There is more than one way to get consistency of the MLE.

2. Logistic regression with random X

Consider a univariate logistic regression model where we observe n i.i.d. pairs (Xi, Yi) ∈ R × {0, 1}. The
covariate is random with a known distribution, Xi

i.i.d.∼ U [−1, 1], and

Pα,β(Yi = 1 | Xi = x) =
eα+βx

1 + eα+βx
.

(a) Show that the maximum likelihood estimator for (α, β) solves∑
i

Yi =
∑
i

πi(α̂n, β̂n)∑
i

YiXi =
∑
i

πi(α̂n, β̂n)Xi,

where πi(α, β) = eα+βXi/(1 + eα+βXi).

(b) Use the result of the previous problem to show that the MLE is consistent, asymptotically Gaussian,
and asymptotically efficient (you may ignore the fact that the MLE may not always exist in finite
samples).

(c) For α = 0, β = 4, calculate the Fisher information for a single pair (Xi, Yi); give it as an integral and
also calculate it numerically (you do not need to analytically evaluate the integral). Note your answer
should not depend on Xi, which is a random variable in this problem. Give the asymptotic distribution
of the MLE, with a numerical answer for the asymptotic variance.

(d) For α = 0, β = 4, and for each of a few different n values:
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(i) Generate a large number (e.g. 1000) of data sets of size n, and for each one compute the MLE
(α̂, β̂) (you can use statistical software to compute the MLE, e.g. the glm function in R).

(ii) Plot histograms of α̂ and β̂ (if you use R, I recommend setting freq=FALSE to get a density
histogram instead of a frequency histogram).

(iii) Overlay the Gaussian curve based on the approximate distribution from part (c) (you can use the
dnorm function in R). About how big does n need to be for the normal approximation to be pretty
good?

(e) Repeat parts (c) and (d) for α = −6 and β = 4. How is it the same or different, and what do you think
accounts for why?

3. Score test with nuisance parameters
Consider a testing problem with X1, . . . , Xn

i.i.d.∼ pθ,ζ(x) with parameter of interest θ ∈ R and nuisance
parameter ζ ∈ R. That is, we are testing H0 : θ = θ0 vs. H1 : θ 6= θ0, and ζ is unknown; let ζ0 denote its
true value. Then there is a version of the score test where we plug in an estimator for ζ, but we must use a
corrected version of the variance.

Let ζ̂0 denote the maximum likelihood estimator of ζ under the null:

ζ̂0(θ0) = arg max
ζ∈R

`(θ0, ζ;X).

Assume ζ̂0 is consistent under the null hypothesis.

Let J(θ, ζ) denote the full-sample Fisher Information (omitting the usual n subscript), and assume it is
continuous and positive-definite everywhere.

(a) Use Taylor expansions informally to show that, for large n,

∂

∂θ
`(θ0, ζ̂0) ≈ ∂

∂θ
`(θ0, ζ0)−

∂2

∂θ∂ζ `(θ0, ζ0)

∂2

∂ζ2 `(θ0, ζ0)

∂

∂ζ
`(θ0, ζ0).

(Note: the LHS should be read as [ ∂∂θ `(θ, ζ)]
∣∣
θ0,ζ̂0

, and not d
dθ0

[`(θ0, ζ̂0(θ0))]).

(b) Using part (a), conclude that(
J11 −

J2
12

J22

)−1/2
∂

∂θ
`(θ0, ζ̂0)⇒ N(0, 1) as n→∞

where J = J(θ0, ζ̂0). Compare this to the score test statistic we would use if ζ0 were known rather than
estimated. (Note: you may assume without proof that the approximation error in part (a) is negligible;
i.e. you may take the “≈” as an exact equality).

Moral: The score test can be carried out with nuisance parameters, but the fact that we estimate the nuisance
parameter affects the distribution of the test statistic in a way that we need to take into account.

4. Poisson score test
Suppose that for i = 1, . . . , xn we observe a real covariate xi ∈ R (fixed and known) and a Poisson response
Yi ∼ Pois(λi). We assume that λi = α + βxi, with the restriction that λi ≥ 0 for all i, but with α, β ∈ R
otherwise unrestricted. Assume that

lim
n→∞

∑n
i=1 |xi − x̄n|3

(
∑n
i=1(xi − x̄n)2)

3/2
= 0,

where x̄n = n−1
∑n
i=1 xi. We observe the first n pairs (xi, yi) and our goal is to test the hypothesis

H0 : β = 0 vs. H1 : β > 0. Assume that there are at least 3 distinct values represented among x1, . . . , xn.
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(a) Show that this model is a curved exponential family.

(b) Derive the score test statistic for H0 vs H1. Give the test statistic and asymptotic rejection cutoff. It is
not necessary to normalize it for this part.

(c) Show that your test statistic is indeed asymptotically normally distributed, and find an asymptotically
valid rejection cutoff.
Hint: It may help to use the Lyapunov CLT, which applies to sums of independent random variables
that are not necessarily identically distributed: Suppose Z1, Z2, . . . is a sequence of random variables
with Zi ∼ (µi, σ

2
i ), for σ2

i <∞. Define s2n =
∑n
i=1 σ

2
i . If for some δ > 0, we have

lim
n→∞

1

s2+δn

n∑
i=1

E
[
|Zi − µi|2+δ

]
= 0,

then s−1n
∑n
i=1(Zi − µi)⇒ N(0, 1).

(d) Suppose n is small, so we don’t want to rely on the asymptotic normality. Explain how we could find
a finite-sample exact conditional cutoff for the score test from part (b) (it is not necessary to prove any
optimality property).

5. Super-Efficient Estimator

Let X1, . . . , Xn
i.i.d.∼ N(θ, 1) and consider estimating θ via:

δn(X) = Xn1{|Xn| > an},

where an → 0 but an
√
n→∞ as n→∞ (for example, an = n−1/4).

(a) Show that δn has the same asymptotic distribution as Xn when θ 6= 0, but that
√
n(δn − 0)

p→ 0 if
θ = 0.

(b) Show that, pointwise in θ, as n→∞,

nMSE(δn; θ)→ 1{θ 6= 0},

but that the convergence is not uniform in θ; in fact,

sup
θ∈R

nMSE(δn; θ)→∞.

(Note: this is an example of a situation where it is incorrect to exchange a limit with a supremum.)

(c) Optional: Can you find a scaling of δn that converges to a non-degenerate distribution when θ = 0?
What is the limiting distribution?

Moral: The sense in which asymptotically efficient estimators are “optimal” is not easy to define, and it isn’t
obvious how we should compare the asymptotic behavior of different estimators. In this example it would
appear initially that the super-efficient estimator renders the sample mean inadmissible. But this is only true
if we look at the pointwise limit for fixed θ; at any n there are some values of θ for which the estimator is
performing very badly, and this gets worse and worse as n gets larger.

3


