
Stats 210A, Fall 2023
Homework 11

Due date: Wednesday, Nov. 15

1. Some Maximum Likelihood Estimators

Find the MLE for each model below, show that it is consistent, and find its asymptotic distribution. You
may assume our Taylor expansions from class are valid without checking conditions.

(a) Binomial: X1, . . . , Xn
i.i.d.∼ Binom(m, θ). Find the MLE for θ and for the natural parameter η =

log θ
1−θ .

(b) Gaussian: X1, . . . , Xn
i.i.d.∼ N(θ, σ2). Find (i) the MLE for θ if σ2 is known, (ii) the MLE for σ2 if

θ is known, and (iii) the MLE for (θ, σ2) if neither is known.

(c) Laplace: X1, . . . , Xn
i.i.d.∼ 1

2e
−|x−θ|. Assume n is odd.

For this problem, the log-likelihood is non-differentiable at one point, but we can still use our
formula for the asymptotic distribution of the MLE from class, with the Fisher information defined
by J1(θ) = Varθ[ ˙̀1(θ;Xi)]. You may use this fact without proof.

(d) Optional (not graded, no extra points) For the Laplace, plot a few realizations of the log-likelihood
for n = 5000 with θ0 = 0, and plot over it the quadratic approximation given by

`n(θ)− `n(θ0) ≈ ˙̀
n(θ0)(θ − θ0)−

1

2
nJ1(θ0)(θ − θ0)2.

Is the quadratic approximation pretty good in the neighborhood θ0 ± 3σ, where σ2 is the ap-
proximate variance of θ̂n? Intuitively, what do you think might account for this when the second
derivative doesn’t exist?

2. Estimating the inverse of a mean
Suppose that X1, . . . , Xn

i.i.d.∼ N(θ, 1), and that we are interested in estimating the quantity 1/θ. In order
to do so, we use the estimator δ(X) = 1/Xn where Xn = 1

n

∑n
i=1Xi is the sample mean. Assume

θ 6= 0.

(a) Show that δ is asymptotically normal, and find its asymptotic distribution.

(b) Show that the expectation E|1/Xn| = ∞ for every n. Why does this not contradict the result of
part (a)?

(c) Simulate to find the distribution of 1/Xn for n = 10, 100, 104 and θ = 0.1, 1, 10. For each setting
of the parameters, plot a histogram of the estimator and overlay its Gaussian approximation. When
the Gaussian approximation is not good, what is going wrong? Is the sample size a reliable indicator
of whether we should trust an asymptotic approximation?
Hint: If you are using R, the functions hist (with argument freq = FALSE to get a density
histogram), curve, and dnorm will come in handy. Also, I recommend manually setting the
breaks and xlim arguments in hist to stop enormous values from making your histogram
uninformative: µ ± 4σ is a reasonable range of values to plot, where µ and σ2 are the mean and
variance of the Gaussian approximation.
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3. Limiting distribution of U -statistics
Suppose X1, . . . , Xn

i.i.d.∼ P in some sample space X . Un = Un(X1, . . . , Xn) is called a rank-2 U -
statistic if

Un =
1

n(n− 1)

n∑
i=1

∑
j 6=i

h(Xi, Xj)

where h is a symmetric function, i.e. h(x1, x2) = h(x2, x1) for any x1, x2 ∈ X .

In this problem, we denote θ = Eh(X1, X2) and assume that Eh(X1, X2)
2 < ∞. Note that Un is the

nonparametric UMVU estimator of θ.

Perhaps surprisingly, we can derive the asymptotic distribution of Un in a relatively small number of
steps using a technique called Hájek projection where we approximate it by an additive function of the
independent Xi variables. We walk through the proof below.

(a) Define g(x) = Eh(x,X2)− θ =
∫
h(x, u) dP (u)− θ. Show that, for all i,

Eg(Xi) = 0, and Var(g(Xi)) <∞.

(Note: g is a specific function from X to R. It is not a rule for naively substituting symbols into
expressions. In particular, note that g(Xi), a random variable, is not the same as the deterministic
expression Eh(Xi, X2)− θ.)

(b) Define Ûn = θ+ 2
n

∑n
i=1 g(Xi). Show that E[(Un− Ûn)f(Xi)] = 0 for any i and any measurable

function f(Xi) with E[f(Xi)
2] <∞.

(Hint: Condition on Xi)

(c) Show that
√
n(Un − Ûn)

p→ 0 as n → ∞. (Hint: show that Un and Ûn have the same asymptotic
variance, and then apply part (b)).

(d) Conclude that
√
n(Un − θ)⇒ N(0, 4ζ1), where ζ1 = Var(g(X1)).

(e) Assume that X = R with EX4
i <∞. Express the sample variance S2

n = 1
n−1

∑n
i=1(Xi −X)2 as

a rank-2 U-statistic and use the above results to derive its asymptotic distribution.

(Note: a similar result holds in general for rank-r U -statistics if we set Ûn = θ + r
n

∑
i g(Xi) where

g(x) = E[h(x,X2, . . . , Xr)]− θ. )

Moral: If Pn is the distribution of (X1, . . . , Xn) then it is easy to check that the set of all square-
integrable random variables of the form f(X1, . . . , Xn) (where f : Xn → R is measurable) forms a
vector space over R, which we call L2(Pn), where we can define an inner product as

〈f(X), g(X)〉L2 = E[f(X)g(X)] ≤
√

E[f(X)2]E[g(X)2] <∞.

Moreover, the subset of those random variables that can be written as
∑
i fi(Xi), where each fi is

measurable, forms a subspace. Part (b) establishes that the simpler random variable Ûn is the projection
of Un onto this subspace, and part (c) establishes that Un is asymptotically very close to its projection.

4. Probabilistic big-O notation

Let X1, X2, . . . denote a sequence of random vectors (with ‖Xn‖ < ∞ almost surely for each n). We
say the sequence is bounded in probability (or sometimes tight) if for every ε > 0 there exists a constant
Mε > 0 for which

P(‖Xn‖ > Mε) < ε, ∀n.

Informally, there is “no mass escaping to infinity” as n grows. Like regular big-O notation, these symbols
can help to make rigorous asymptotic proofs look clean and intuitive.
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For a fixed sequence an, we say Xn = op(an) if Xn/an
p→ 0 as n → ∞, and Xn = Op(an) if the

sequence (Xn/an)n≥1 is bounded in probability.

Prove the following facts for Xn, Yn ∈ Rd:

(a) If Xn ⇒ X for any random vector X , then Xn = Op(1).

(b) If Xn = op(an) then Xn = Op(an).

(c) If an/bn → 0 and Xn = Op(an), then Xn = op(bn).

(d) If Xn = Op(an) and Yn = Op(bn) then Xn + Yn = Op(max{an, bn}).
(e) If Xn = Op(an) and Yn = op(bn), then X ′nYn = op(anbn). If Xn = Op(an) and Yn = Op(bn),

then X ′nYn = Op(anbn).

(f) If Xn = Op(1) and g : Rd → Rk is continuous then g(Xn) = Op(1).

(g) For d = 1, if Xn = Op(an) with an → 0 and g : R → R is continuously differentiable with
g(0) = ġ(0) = 0, then g(Xn) = op(an). Show further that if g is twice continuously differentiable
then g(Xn) = Op(a

2
n). (Hint: Use the mean value theorem and apply a previous part of this

problem.)

(h) For d = 1, if Var(Xn) = a2n < ∞ and EXn = bn then Xn = Op(an + bn). (Hint: Use
Chebyshev’s inequality.)

(i) Optional (not graded, no extra points): If Var(Xn) = a2n < ∞, is it impossible to have Xn =
op(an)? Prove or give a counterexample.
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