
Stats 210A, Fall 2023
Homework 10

Due date: Wednesday, Nov. 8

1. Multidimensional testing
Suppose X ∼ Nd(µ, Id) for unknown µ ∈ Rd. Consider testing H0 : µ = 0 vs. H1 : µ 6= 0. You may
take as given the fact that if d = 1 the UMPU test for the Gaussian location family is unique: i.e., it is
the only UMPU test for that model up to almost sure equality.

(a) Show that for any d > 1 and α ∈ (0, 1), there exists no UMP or UMPU level-α test.
Hint: what would we do if we knew µ = (θ, 0, 0, . . . , 0) for an unknown θ ∈ R?

(b) Suppose we have a prior Λ1 for the value that µ takes under the alternative; that is, µ ∼ Λ1 if H1 is
true and µ = 0 if H0 is true. Define the average power as∫

Rd

Eµ[φ(X)] dΛ1(µ).

If Λ1 = N(ν,Σ), with positive definite covariance matrix Σ, find the level-α test that maximizes
the average power. Show that the acceptance region is an ellipse centered at 0 if ν = 0.
Hint: You can use the result from homework 8.

(c) Optional: Show that if Λ1 is rotationally invariant, the χ2 test that rejects for large ‖X‖2 maxi-
mizes the average power.

Moral: Choosing a test in higher dimensions requires us to think harder about how to compromise across
different alternative directions, and Bayesian thinking can give us some guidance.

2. James-Stein estimator with regression-based shrinkage

Consider estimating θ ∈ Rn in the model Y ∼ Nn(θ, In). In the standard James-Stein estimator, we
shrink all the estimates toward zero, but it might make more sense to shrink them towards the average
value Y , or towards some other value based on observed side information.

(a) Consider the estimator

δ
(1)
i (Y ) = Y +

(
1− n− 3

‖Y − Y 1n‖2

)(
Yi − Y

)
Show that δ(1)(Y ) strictly dominates the estimator δ(0)(Y ) = Y , for n ≥ 4.

MSE(θ; δ(1)) < MSE(θ; δ(0)), for all θ ∈ Rn.

Calculate the MSE of δ(1) if θ1 = θ2 = · · · = θn.
Hint: Change the basis and think about how the estimator operates on different subspaces.

(b) Now suppose instead that we have side information about each θi, represented by covariate vectors
x1, . . . , xn ∈ Rd. Assume the design matrix X ∈ Rn×d whose ith row is x′i has full column rank.
Suppose that we expect θ ≈ Xβ for some β ∈ Rd, but unlike the usual linear regression setup, we
will not assume θ = Xβ with perfect equality.
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Find an estimator δ(2), analogous to the one in part (a), that dominates δ(0) whenever n− d ≥ 3:

MSE(θ; δ(2)) < MSE(θ; δ(0)), for all θ ∈ Rn,

and for which MSE(Xβ; δ(2)) = d+ 2, for any β ∈ Rd.
Hint: Think of this setting as a generalization of part (a), which can be considered a special case
with d = 1 and all xi = 1.

3. Confidence regions for regression

Assume we observe x1, . . . , xn ∈ R, which are not all identical (for some i and j, xi 6= xj). We also
observe

Yi = β0 + β1xi + εi, for εi
i.i.d.∼ N(0, σ2).

β0, β1 ∈ R and σ2 > 0 are unknown. Let x̄ represent the mean value 1
n

∑
i xi.

(a) Give an explicit expression for the t-based confidence interval for β1, in terms of a quantile of a
Student’s t distribution with an appropriate number of degrees of freedom (feel free to break up
the expression, for example by first giving an expression for β̂1 and then using β̂1 in your final
expression). You do not need to show the interval is UMAU.
Hint: It may be helpful to consider a translation of the model similar to what we did in Problem 3
of Homework 8.

(b) Invert an F -test to give a confidence ellipse for (β0, β1). It may be convenient to represent the set
as an affine transformation of the unit ball in R2:

b+AB1(0) = {b+Az : z ∈ R2, ‖z‖ ≤ 1}, for b ∈ R2, A ∈ R2×2.

Give explicit expressions for b and A in terms of a quantile of an appropriate F distribution.
Hint: Consider the joint distribution of (β̂0 − β0, β̂1 − β1).

Hint: Use the fact that
(β̂0

β̂1

)
∼ N2

((
β0

β1

)
, σ2(X ′X)−1

)
. You do not need to show that the confi-

dence ellipse you come up with has any optimality properties.

4. Confidence bands for regression

The setup for this problem is the same as for Problem 4 only now we are interested in giving confidence
bands for the regression line f(x) = β0 + β1x. In this problem you do not need to give explicit
expressions for everything, but you should be explicit enough that someone could calculate the bands
based on your description.

(a) For a fixed value x0 ∈ R (not necessarily one of the observed xi values) give a 1 − α t-based
confidence interval for f(x0) = β0 + β1x0. That is, we want to find CP1 (x0), CP2 (x0) such that

P
(
CP1 (x0) ≤ f(x0) ≤ CP2 (x0)

)
= 1− α.

The functions CP1 (x), CP2 (x) that we get from performing this operation on all x values give a
pointwise confidence band for the function f(x).

(b) Now give a simultaneous confidence band around f(x) = β0 + β1x. That is, give CS1 (x), CS2 (x)
with

P
(
CS1 (x) ≤ f(x) ≤ CS2 (x), for all x ∈ R

)
= 1− α,

and show that your confidence band has this property.
Hint: If all we know is that (β0, β1) is in the confidence ellipse from Problem 4, what can we
deduce about f(x)?
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(c) Download the data set in hw10-4.csv from the course web site and make a scatter plot of the
data. Plot the OLS regression line as well as the two confidence bands. Describe what you see.
What do the bands do as x goes away from the data set, and why does this make sense?
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