Stats 210A, Fall 2023 Homework 10

Due date: Wednesday, Nov. 8

1. Multidimensional testing

Suppose $X \sim N_{d}\left(\mu, I_{d}\right)$ for unknown $\mu \in \mathbb{R}^{d}$. Consider testing $H_{0}: \mu=0$ vs. $H_{1}: \mu \neq 0$. You may take as given the fact that if $d=1$ the UMPU test for the Gaussian location family is unique: i.e., it is the only UMPU test for that model up to almost sure equality.
(a) Show that for any $d>1$ and $\alpha \in(0,1)$, there exists no UMP or UMPU level- α test.

Hint: what would we do if we knew $\mu=(\theta, 0,0, \ldots, 0)$ for an unknown $\theta \in \mathbb{R}$?
(b) Suppose we have a prior Λ_{1} for the value that μ takes under the alternative; that is, $\mu \sim \Lambda_{1}$ if H_{1} is true and $\mu=0$ if H_{0} is true. Define the average power as

$$
\int_{\mathbb{R}^{d}} \mathbb{E}_{\mu}[\phi(X)] \mathrm{d} \Lambda_{1}(\mu)
$$

If $\Lambda_{1}=N(\nu, \Sigma)$, with positive definite covariance matrix Σ, find the level- α test that maximizes the average power. Show that the acceptance region is an ellipse centered at 0 if $\nu=0$.
Hint: You can use the result from homework 8.
(c) Optional: Show that if Λ_{1} is rotationally invariant, the χ^{2} test that rejects for large $\|X\|^{2}$ maximizes the average power.

Moral: Choosing a test in higher dimensions requires us to think harder about how to compromise across different alternative directions, and Bayesian thinking can give us some guidance.

2. James-Stein estimator with regression-based shrinkage

Consider estimating $\theta \in \mathbb{R}^{n}$ in the model $Y \sim N_{n}\left(\theta, I_{n}\right)$. In the standard James-Stein estimator, we shrink all the estimates toward zero, but it might make more sense to shrink them towards the average value \bar{Y}, or towards some other value based on observed side information.
(a) Consider the estimator

$$
\delta_{i}^{(1)}(Y)=\bar{Y}+\left(1-\frac{n-3}{\left\|Y-\bar{Y} 1_{n}\right\|^{2}}\right)\left(Y_{i}-\bar{Y}\right)
$$

Show that $\delta^{(1)}(Y)$ strictly dominates the estimator $\delta^{(0)}(Y)=Y$, for $n \geq 4$.

$$
\operatorname{MSE}\left(\theta ; \delta^{(1)}\right)<\operatorname{MSE}\left(\theta ; \delta^{(0)}\right), \quad \text { for all } \theta \in \mathbb{R}^{n}
$$

Calculate the MSE of $\delta^{(1)}$ if $\theta_{1}=\theta_{2}=\cdots=\theta_{n}$.
Hint: Change the basis and think about how the estimator operates on different subspaces.
(b) Now suppose instead that we have side information about each θ_{i}, represented by covariate vectors $x_{1}, \ldots, x_{n} \in \mathbb{R}^{d}$. Assume the design matrix $X \in \mathbb{R}^{n \times d}$ whose i th row is x_{i}^{\prime} has full column rank. Suppose that we expect $\theta \approx X \beta$ for some $\beta \in \mathbb{R}^{d}$, but unlike the usual linear regression setup, we will not assume $\theta=X \beta$ with perfect equality.

Find an estimator $\delta^{(2)}$, analogous to the one in part (a), that dominates $\delta^{(0)}$ whenever $n-d \geq 3$:

$$
\operatorname{MSE}\left(\theta ; \delta^{(2)}\right)<\operatorname{MSE}\left(\theta ; \delta^{(0)}\right), \quad \text { for all } \theta \in \mathbb{R}^{n}
$$

and for which $\operatorname{MSE}\left(X \beta ; \delta^{(2)}\right)=d+2$, for any $\beta \in \mathbb{R}^{d}$.
Hint: Think of this setting as a generalization of part (a), which can be considered a special case with $d=1$ and all $x_{i}=1$.

3. Confidence regions for regression

Assume we observe $x_{1}, \ldots, x_{n} \in \mathbb{R}$, which are not all identical (for some i and $j, x_{i} \neq x_{j}$). We also observe

$$
Y_{i}=\beta_{0}+\beta_{1} x_{i}+\varepsilon_{i}, \text { for } \varepsilon_{i} \stackrel{\text { i.i.d. }}{\sim} N\left(0, \sigma^{2}\right) .
$$

$\beta_{0}, \beta_{1} \in \mathbb{R}$ and $\sigma^{2}>0$ are unknown. Let \bar{x} represent the mean value $\frac{1}{n} \sum_{i} x_{i}$.
(a) Give an explicit expression for the t-based confidence interval for β_{1}, in terms of a quantile of a Student's t distribution with an appropriate number of degrees of freedom (feel free to break up the expression, for example by first giving an expression for $\hat{\beta}_{1}$ and then using $\hat{\beta}_{1}$ in your final expression). You do not need to show the interval is UMAU.
Hint: It may be helpful to consider a translation of the model similar to what we did in Problem 3 of Homework 8.
(b) Invert an F-test to give a confidence ellipse for $\left(\beta_{0}, \beta_{1}\right)$. It may be convenient to represent the set as an affine transformation of the unit ball in \mathbb{R}^{2} :

$$
b+A \mathbb{B}_{1}(0)=\left\{b+A z: z \in \mathbb{R}^{2},\|z\| \leq 1\right\}, \quad \text { for } b \in \mathbb{R}^{2}, A \in \mathbb{R}^{2 \times 2}
$$

Give explicit expressions for b and A in terms of a quantile of an appropriate F distribution.
Hint: Consider the joint distribution of $\left(\hat{\beta}_{0}-\beta_{0}, \hat{\beta}_{1}-\beta_{1}\right)$.
Hint: Use the fact that $\binom{\hat{\beta}_{0}}{\hat{\beta}_{1}} \sim N_{2}\left(\binom{\beta_{0}}{\beta_{1}}, \sigma^{2}\left(X^{\prime} X\right)^{-1}\right)$. You do not need to show that the confidence ellipse you come up with has any optimality properties.

4. Confidence bands for regression

The setup for this problem is the same as for Problem 4 only now we are interested in giving confidence bands for the regression line $f(x)=\beta_{0}+\beta_{1} x$. In this problem you do not need to give explicit expressions for everything, but you should be explicit enough that someone could calculate the bands based on your description.
(a) For a fixed value $x_{0} \in \mathbb{R}$ (not necessarily one of the observed x_{i} values) give a $1-\alpha t$-based confidence interval for $f\left(x_{0}\right)=\beta_{0}+\beta_{1} x_{0}$. That is, we want to find $C_{1}^{P}\left(x_{0}\right), C_{2}^{P}\left(x_{0}\right)$ such that

$$
\mathbb{P}\left(C_{1}^{P}\left(x_{0}\right) \leq f\left(x_{0}\right) \leq C_{2}^{P}\left(x_{0}\right)\right)=1-\alpha
$$

The functions $C_{1}^{P}(x), C_{2}^{P}(x)$ that we get from performing this operation on all x values give a pointwise confidence band for the function $f(x)$.
(b) Now give a simultaneous confidence band around $f(x)=\beta_{0}+\beta_{1} x$. That is, give $C_{1}^{S}(x), C_{2}^{S}(x)$ with

$$
\mathbb{P}\left(C_{1}^{S}(x) \leq f(x) \leq C_{2}^{S}(x), \text { for all } x \in \mathbb{R}\right)=1-\alpha
$$

and show that your confidence band has this property.
Hint: If all we know is that $\left(\beta_{0}, \beta_{1}\right)$ is in the confidence ellipse from Problem 4, what can we deduce about $f(x)$?
(c) Download the data set in hw10-4.csv from the course web site and make a scatter plot of the data. Plot the OLS regression line as well as the two confidence bands. Describe what you see. What do the bands do as x goes away from the data set, and why does this make sense?

