
Stats 210A, Fall 2023
Homework 1

Due date: Wednesday, Sep. 6
You may disregard measure-theoretic niceties about conditioning on measure-zero sets, almost-sure equal-

ity vs. actual equality, “all functions” vs. “all measurable functions,” etc. (unless the problem is explicitly
asking about such issues).

1. Bias-Variance Tradeoff

Consider a generic estimation setting where we observe X ∼ Pθ, for a model P = {Pθ : θ ∈ Θ ⊆ Θ},
and we want to estimate θ using some estimator δ(X) ∈ Rd. The bias of δ (under sampling from Pθ) is
defined as

Biasθ(δ(X)) = Eθ[δ(X)]− θ.
For d = 1, it is well-known that the mean squared error MSE(θ; δ) can be decomposed as the sum of the
squared bias of δ and its variance:

MSE(θ; δ) = Biasθ(δ)2 + Varθ(δ). (1)

(a) Derive the correct generalization of (1) for general d ≥ 1, where the MSE is defined as

MSE(θ; δ) = Eθ‖δ(X)− θ‖22.

It might help to start with d = 1.
(b) Suppose that we are estimating the false positive rate of a new diagnostic test for some disease,

using a sample of n specimens taken from a population known not to have the disease we are
testing for. If X is the number of false positives and θ ∈ (0, 1) is the false positive rate, assume
X ∼ Binom(n, θ). The “obvious” estimator is δ0(X) = X/n.
However, biological samples are expensive to obtain and the new test is a slightly modified version
of an old test whose false positive rate is known to be θ0 ∈ (0, 1), so we might want to “shrink” the
estimator toward θ0 as follows:

δγ(X) = γθ0 + (1− γ)
X

n
, for γ ∈ [0, 1],

where taking γ = 0 reduces to the “obvious” estimator δ0(X) = X/n.
Find the MSE of δγ(X) as an explicit expression in θ0, θ, n, and γ.

(c) Find the parameter γ∗ for which the MSE is minimized, as an expression in n, θ, and θ0. What
happens to γ∗ if we send θ → θ0 holding θ0 and n fixed? What if we send n → ∞ holding θ and
θ0 fixed instead? Explain why these limits make sense.

(d) In our calculation above, γ∗ is never exactly zero. That is, a smidgeon of shrinkage always beats
no shrinkage. Does this prove that δ0 is inadmissible? Prove or disprove whether δ0 is dominated
by any δγ .
Moral: Shading our estimate toward some “hunch” value can be an effective technique to improve
an estimator’s performance. This is a central idea in statistics and machine learning that goes by
many names: regularization, shrinkage, and inductive bias, to name a few. The optimal amount of
bias in an estimator depends on the sample size, and the accuracy of our hunch, but is rarely zero.
This may give us pause about insisting that estimators should be unbiased, a theme to which we
will return later.
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2. Convexity of A(η) and Ξ1

Let P = {pη : η ∈ Ξ1} denote an s-parameter exponential family in canonical form

pη(x) = eη
′T (x)−A(η)h(x), A(η) = log

∫
X
eη
′T (x)h(x) dµ(x),

where Ξ1 = {η : A(η) <∞} is the natural parameter space.

Recall Hölder’s inequality: if q1, q2 ≥ 1 with q−11 +q−12 = 1, and f1 and f2 are (µ-measurable) functions
from X to R, then

‖f1f2‖L1(µ) ≤ ‖f1‖Lq1 (µ)‖f2‖Lq2 (µ), where ‖f‖Lq(µ) =

(∫
X
|f(x)|q dµ(x)

)1/q

.

(Note that q1 = q2 = 2 reduces to Cauchy-Schwarz).

(a) Show that A(η) : Rs → [0,∞] is a convex function: that is, for any η1, η2 ∈ Rs (not just in Ξ1),
and c ∈ [0, 1] then

A(cη1 + (1− c)η2) ≤ cA(η1) + (1− c)A(η2) (2)

(Hint: try q1 = c−1, f1(x)1/c = eη
′
1T (x)h(x).)

(b) Conclude that Ξ1 ⊆ Rs is convex.
Moral: The natural parameter space for any exponential family (meaning the set of all parameters
η that give normalizable densities) is a convex subset of Rs.

3. Expectation of an increasing function

(a) Assume X ∼ P is a real-valued random variable. Show that if f(x) and g(x) are non-decreasing
functions of x, then

Cov(f(X), g(X)) ≥ 0

(Hint: derive the identity E [(f(X1)− f(X2))(g(X1)− g(X2))] = 2Cov(f(X1), g(X1)), where
X1, X2

i.i.d.∼ P ).

(b) Let pη(x) be a one-parameter canonical exponential family with non-decreasing sufficient statistic
T (x), where x ∈ X ⊆ R:

pη(x) = eηT (x)−A(η)h(x).

Let ψ(x) be any non-decreasing bounded function. Show that, for η ∈ Ξo
1, d

dηEη[ψ(X)] ≥ 0.

(Hint: find an expression for d
dηEη[ψ(X)] by using methods akin to the ones we used in class to

derive the differential identities. You may appeal to Keener Theorem 2.4 to justify differentiating
under the integral sign.)

(c) Conclude that X is stochastically increasing in η; that is, show Pη(X ≤ c) is non-increasing in η,
for every c ∈ R.

Moral: This exercise confirms something that we should intuitively expect to be true: that increasing
the natural parameter η, which “tilts” the distribution toward larger values of T (X), will also shift the
distribution ofX to the right if T is an increasing function. It also illustrates the usefulness of differential
identities for understanding exponential families’ structure.

4. Exponential families maximize entropy
The entropy (with respect to µ) of a random variable X with density p, is defined by

h(p) = Ep(− log p(X)) = −
∫
{x: p(x)>0}

log(p(x))p(x) dµ(x).
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Here, as always in this course, log denotes the natural logarithm, but h is also commonly defined in terms
of the log with base 2. Entropy arises naturally in information theory as a minimal expected code length
(for the base-2 log), or in statistical mechanics as a measure of the disorder in a physical system.

Let T : X → Rs denote a generic function, and let α be some vector in the interior of the convex hull
of T (X ) = {T (x) : x ∈ X}. Consider the problem of maximizing h(p) over all probability densities
subject to the constraint that Ep[T (X)] = α. That is, we want to solve

maximize −
∫
{x: p(x)>0}

log(p(x))p(x) dµ(x)

s.t. p(x) ≥ 0,

∫
X
p(x) dµ(x) = 1, and

∫
X
p(x)T (x) dµ(x) = α ∈ Rs.

(a) If X is a finite set with µ({x}) > 0 for all x ∈ X , show that the optimal p∗ is a member the
s-parameter exponential family

pη(x) = eη
′T (x)−A(η),

with parameter η∗ ∈ Rs chosen so that pη∗ satisfies the constraints.
(Hint: use Lagrange multipliers).

(b) Blithely1 applying the result of (a) to X = R, find the distribution that maximizes entropy with
respect to the Lebesgue measure, subject to the constraint that E(X) = µ,Var(X) = σ2.

(c) Assume that we need to place n balls into d bins. The number of ways to place the balls resulting
in ki total balls in bin i, for i = 1, . . . , d, is given by the combinatorial expression n!

k1!k2!···kd! .
Now consider the empirical distribution of the balls. Its probability mass function is p(i) = ki/n
with respect to the counting measure on {1, . . . , d}. Let Np denote the number of configurations
with empirical distribution p, and show that

log(Np) = nh(p) +O(log n),

where h(p) is the entropy with respect to the counting measure on {1, . . . , d}.
In other words, there are many more high-entropy configurations than low-entropy configurations.
This suggests the intuition that, if we consider a physical system at a “macro level” (such as the
distribution of gas particles in a container) then we should expect it to drift toward high-entropy
configurations.
Hint: It may be helpful to recall Stirling’s approximation:

log(n!) = n log n− n+O(log n)

Moral: This exercise illustrates additional reasons why exponential family distributions are natural ob-
jects of study in statistics.

5. Gamma family

The gamma family is a two-parameter family of distributions on R+ = [0,∞), with density

pk,θ(x) =
xk−1e−x/θ

Γ(k)θk

with respect to the Lebesgue measure on R+. k > 0 and θ > 0 are respectively called the shape and
scale parameters, and Γ(k) is the gamma function, defined as

Γ(k) =

∫ ∞
0

xk−1e−x dx.

1Meaning naively, without any concern that anything new might go wrong in a continuous space
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The gamma distribution generalizes the exponential distribution

Exp(θ) = θ−1e−x/θ = Gamma(1, θ)

and the chi-squared distribution

χ2
d =

xd/2−1e−x/2

Γ(d/2)2d/2
= Gamma(d/2, 2).

(a) Show that the Gamma is a 2-parameter exponential family by putting it into its canonical form. Find
the natural parameter, sufficient statistic, carrier density, and log-partition function (Note: there are
multiple valid ways of doing this).

(b) Find the mean and variance of X ∼ Γ(k, θ).

(c) Find the moment generating function of X ∼ Γ(k, θ):

MX(u) = Ek,θ[euX ],

and use it to find the distribution of X+ =
∑n
i=1Xi where X1, . . . , Xn are mutually independent

with Xi ∼ Gamma(ki, θ).
You may use without proof the following uniqueness result about MGFs: If Y and Z are two
random variables whose MGFs coincide in a neighborhood of 0 (∃δ > 0 for which MY (u) =
MZ(u) <∞ for all u ∈ [−δ, δ]), then Y and Z have the same distribution.
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