
Stats 210A, Fall 2023
Optional Homework 0
Not Due on: Wednesday, Aug. 30

Lecture 1 included a “whirlwind tour” of measure theory at the heuristic level that we’ll be using in class.
Problem 1 is meant to give a little more intuition about densities and the others are meant to motivate measure-
theoretic probability a bit.

Note this problem set has three problems; a typical problem set will have 5.

1. Densities

For a given point x ∈ X , the Dirac measure is defined as

δx(A) = 1{x ∈ A} =

{
1 if x ∈ A
0 otherwise

.

Essentially, δx is the measure that puts a unit of mass on x and none anywhere else.1 Integrals wrt δx
are defined as

∫
f(u) dδx(u) = f(x).

Furthermore, suppose µ1 and µ2 are both measures on X , and a1, a2 ≥ 0. You may use without proof
that the sum ν = a1µ1 + a2µ2 is also a measure, and that for “nice enough” functions,∫

f(x) dν(x) = a1

∫
f(x) dµ1(x) + a2

∫
f(x) dµ2(x).

(a) Let x1, x2, . . . , xn be integers (not necessarily all distinct), and define two measures on the set Z
of all integers: the counting measure # from class, and the empirical distribution

P̂n(A) =
1

n

n∑
i=1

δxi
(A).

That is, P̂n(A) is the fraction of points that fall into the set A.

Note: if x1, . . . , xn are sampled from some distribution P then P̂n is a natural nonparametric
estimator of the measure P .
Show that P̂n is absolutely continuous with respect to # but not the other way around. What is the
density of P̂n with respect to #? Is it possible to define a density of # with respect to P̂n?

(b) For X = [0,∞), define the measure µ(A) = λ(A) + δ0(A), where λ represents the Lebesgue
measure. For fixed θ ∈ R, define the random variable

X = max(0, Z) where Z ∼ N(θ, 1),

what is the density of X’s distribution with respect to µ?

(c) Consider two densities p1 and p2 with respect to some common measure µ on a space X (not
necessarily the same µ from part (b)). Suppose p1 and p2 both result in the same measure P
defined by P (A) =

∫
1A(x)pi(x) dµ(x).

1In a sense this is defined identically to the indicator function 1A(x), but we think of one as being a function of x with A fixed, and
the other as a function of A (a measure) with x fixed.
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Define the set A = {x : p1(x) 6= p2(x)}, and show that µ(A) = 0 (Hint: consider sets like

An =

{
x : p1(x)− p2(x) ∈

[
1

n+ 1
,

1

n

)}
for n = 1, 2, . . ..)
Don’t worry about whether the measure is well-defined for An (i.e., whether these sets are measur-
able). They are in the sense we need them to be.

2. A conditional probability paradox

LetX,Y i.i.d.∼ N(0, 1). This problem is meant to show that by carelessly conditioning on probability-zero
events we can get ourselves into trouble. It is directly inspired by a calculation I personally flubbed a
few years ago.

(a) Defining S = X + Y and D = X − Y , show S and D are independent and conclude that

E[X2 + Y 2 | D] = D2/2 + 1

(b) Now define the polar parameterization (R,Θ) with R =
√
X2 + Y 2 and Θ ∈ [0, 2π) such that

X = R cos Θ and Y = R sin Θ. Show that R is independent of Θ and conclude that

E[X2 + Y 2 | Θ] = 2

(c) Use (a) and then (b) to find the expectation of X2 + Y 2 conditional on the event X = Y . Can you
come up with an intuitive explanation for how we could have arrived at two different answers?

Moral: Intuition may fail us when we condition on a measure-zero event, and in cases like this the
meaning can be ambiguous and give different answers. Conditioning on a random variable, on the
other hand, tends to give less ambiguous answers (there are still some ambiguities, similar to those we
encounter in defining densities, but they don’t really matter).

3. Non-measurable sets

This problem goes through a construction of a non-measurable set, meant to motivate measure theory
from a real analysis perspective. It concerns the impossibility of defining “volume” for every subset of
the unit interval U = [0, 1).

For x, y ∈ R define the “wraparound addition” (modulo 1) as the fractional part of their sum:

x⊕ y = x+ y − bx+ yc.

Recall that for x ∈ R and A ⊆ R we define the set x + A = {x + a : a ∈ A}. Analogously, we can
define

x⊕A = {x⊕ a : a ∈ A} ⊆ U

Any reasonable definition of “volume” on the interval should have several properties:

(i) Additivity: λ(
⋃∞

i=1Ai) =
∑∞

i=1 λ(Ai) if all Ai ⊆ U and Ai ∩Aj = ∅ for all i 6= j.

(ii) Translation invariance: λ(x⊕A) = λ(A), ∀x ∈ U,A ⊆ U .

(iii) Interval length: λ([x, y)) = y − x, ∀0 ≤ x ≤ y ≤ 1.

Assume that some measure λ exists which satisfies (i)–(iii) and which is defined for all subsets of U . We
will go through several steps to derive a contradiction.
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(a) Define the function A(x) mapping elements of U to subsets of U , via A(x) = x ⊕ Q, where Q is
the set of rational numbers. Show that λ(A(x)) = 0 for any x.

(b) Consider the range RA = {A(x) : x ∈ U}. Show that RA is a collection of uncountably many
subsets of U , all of which are disjoint from each other. That is, show that for any x, y ∈ U , we have
either A(x) = A(y) or A(x) ∩A(y) = ∅.

(c) Now, let B ⊆ U denote a new set, which we construct by selecting a single element from each set
R ∈ RA (it doesn’t matter which element; note this step uses the axiom of choice.)
Define a new function C(x) = x ⊕ B and define RC = {C(x) : x ∈ Q}. Show that RC is a
collection of countably many subsets of U , all of which are disjoint from each other, and whose
union is U .

(d) Show that no matter what value λ(B) takes, λ will have to violate one of the properties (i)–(iii)
(Hint: what does the value of λ(B) imply about λ(U)?)

Because the Lebesgue measure satisfies properties (i)–(iii), it follows that λmust not be defined for every
subset of U .

Moral: One motivation (but not the only motivation) for the idea of a σ-field is to exclude pathological
counterexamples like this.
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