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1.1 Background

Suppose we observe {Xj}n
j=1 i.i.d. F , where F has density f with respect to Lebesgue measure on

the real line. What can we learn about f from these data?

Estimating f can play a role in exploratory data analysis (EDA) as a graphical summary of

the data set. In some contexts, more rigorous estimates and inferences about f and properties of

f such as its value at a point f(x0), its derivative at a point f ′(x0), a Sobolev norm of f such as

‖f‖2
S =

∫
(f 2 + f ′2 + f ′′2)dx, and the number and locations of modes of f , also are interesting. We
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will look at some approaches to estimating f , to finding confidence regious for f , and to testing

hypotheses about f . We will not dwell on optimality considerations.

1.1.1 The Histogram and the Naive Estimator

This section follows Silverman (1990).

Let F̂n denote the empirical cdf of the data {Xj}n
j=1:

F̂n(x) =
1

n

n∑
j=1

1Xj≤x. (1)

Although F̂n is often a good estimator of F , dF̂n/dx is usually not a good estimator of f = dF/dx.

The derivative of the empirical cdf is a sum of point masses at the observations. It usually is not

an enlightening representation of the data.

Suppose we have a collection of class intervals or bins {Ik = (ak, ak+1]}K
k=1 such that every Xj

is in some Ik. (Choosing the intervals to be open on the left and closed on the right is arbitrary;

the essential point is that they be disjoint and that their union include all the data.) Let

wk = diam(Ik) = ak+1 − ak. (2)

The histogram of the data using these bins is

h(x) =
1

n

K∑
k=1

1

wk

1x∈Ik
#
{
{Xj}n

j=1 ∩ Ik

}
. (3)

The histogram is an estimate of f . Its general appearance, including the number and locations of

its modes and its smoothness, depends strongly on the locations and widths of the bins. It is blocky

and discontinuous. If the bin widths and locations are chosen well, its performance—in the sense

of convergence to f in a norm as the sample size n grows—can be reasonable.

Another estimate of f derives from the definition of f as the derivative of F :

f(x) = lim
ε→0

F (x + ε)− F (x)

ε
= lim

h→0

1

2h
Pr{x− h < X ≤ x + h} (4)

One could imagine estimating f by picking a small value of h and taking

f̂h(x) ≡ 1

2h

(
F̂n(x + h)− F̂n(x− h)

)
=

1

2nh

n∑
j=1

1x−h<Xj≤x+h

=
1

n

n∑
j=1

1

h
K
(

x−Xj

h

)
, (5)
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where K(x) = 1
2
× 1−1<x≤1. This is the naive density estimate. It amounts to estimating f(x) by

a superposition (sum) of boxcar functions centered at the observations, each with width 2h and

area 1/n. This sum is also blocky and discontinuous, but it avoids one of the arbitrary choices

in constructing a histogram: the choice of locations of the bins. As h → 0, the naive estimate

converges weakly to the sum of point masses at the data; for h > 0, the naive estimator smooths

the data. The tuning parameter h is analogous to the bin width in a histogram. Larger values of h

give smoother density estimates. Whether “smoother” means “better” depends on the true density

f ; generally, there is a tradeoff between bias and variance: increasing the smoothness increases the

bias but decreases the variance.

It follows from the fact that
∫∞
−∞ K(x)dx = 1 that

∫ ∞

−∞
f̂(x)dx =

1

n

n∑
j=1

1

h

∫ ∞

−∞
K
(

x−Xj

h

)

=
1

n

n∑
j=1

1 = 1. (6)

It follows from the fact that K(x) ≥ 0 that f̂ ≥ 0 for all x. Thus f̂ is a probability density function.

1.2 Kernel estimates

The two properties of the boxcar just mentioned—integrating to one and nonnegativity—hold when-

ever K(x) is itself a probability density function, not just when K is a unit-area boxcar function.

Using a smoother kernel function K, such as a Gaussian density, leads to a smoother estimate f̂K .

Estimates that are linear combinations of such kernel functions centered at the data are called kernel

density estimates . We denote the kernel density estimate with bandwidth (smoothing parameter)

h by

f̂h(x) =
1

nh

n∑
j=1

K
(

x−Xj

h

)
. (7)

The dependence of the estimate on the kernel is not evident in the notation—the kernel is understood

from context. Kernels are always chosen to integrate to one, but there can be asymptotic advantages

to kernels that are negative in places. The density estimates derived using such kernels can fail to

be probability densities, because they can be negative for some values of x. Typically, K is chosen

to be a symmetric probability density function.

There is a large body of literature on choosing K and h well, where “well” means that the

estimate converges asymptotically as rapidly as possible in some suitable norm on probability density
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functions. The most common measure of performance is the mean integrated squared error (MISE):

MISE(f̂) ≡ E
∫

(f̂(x)− f(x))2dx

=
∫

E(f̂(x)− f(x))2dx

=
∫

(Ef̂(x)− f(x))2dx +
∫

Var(f̂)dx. (8)

The MISE is sum of the integral of the squared pointwise bias of the estimate and the pointwise

variance of the estimate. For kernel estimates,

Ef̂(x) =
∫ 1

h
K
(

x− y

h

)
f(y)dy, (9)

and

Varf̂(x) =
∫ 1

h2
K
(

x− y

h

)2

f(y)dy −
[
1

h

∫
K
(

x− y

h

)
f(y)dy

]2
. (10)

The expected value of f̂ is a smoothed version of f , the result of convolving f with the scaled kernel.

If f is itself very smooth, smoothing it by convolution with the scaled kernel does not change its

value much, and the bias of the kernel estimate is small. But in places where f varies rapidly

compared with the width of the scaled kernel, the local bias of the kernel estimate will be large.

Note that the bias depends on the kernel function and the scale (bandwidth) h, not on the sample

size.

The two previous expressions for bias and variance rarely lead to tractable computations, but

good approximations are available subject to some assumptions about K and f . Suppose K inte-

grates to 1, is symmetric about zero so that
∫

xK(x)dx = 0, and has nonzero finite second central

moment
∫

x2K(x)dx = k2 6= 0, and that f has as many continuous derivatives as needed. Then, to

second order in h,

Biash(x) ≈ 1

2
h2f ′′(x)k2. (11)

(See Silverman (1990), pp. 38ff.) Thus∫
Bias2

h(x)dx ≈ 1

4
h4k2

2

∫
(f ′′)2(x)dx, (12)

confirming more quantitatively that (asymptotically) the integrated bias depends on the smoothness

of f . A similar Taylor series approximation shows that to first order in h−1,

Varf̂(x) ≈ n−1h−1f(x)
∫

K2(u)du, (13)

so ∫
Varf̂(x)dx ≈ n−1h−1

∫
K2(u)du. (14)
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Thus shows that to reduce the integrated bias, one wants a narrow kernel, which must have large

values to satisfy
∫

K = 1, while to reduce the integrated variance, one wants the kernel to have

small values, which requires it to be broad to satisfy
∫

K = 1.

By calculus one can show that the approximate MISE is minimized by choosing the bandwidth

to be

h∗ = n−1/5k
−2/5
2

[∫
K2(u)du

]1/5 [∫
(f ′′)2(x)dx

]−1/5

, (15)

which depends on the unknown density f . Note that the (approximately) optimal bandwidth for

MISE decreases with n as n−1/5. For the (approximately) optimal bandwidth h∗,

MISE ≈ n−4/5 × 1.25C(K)
[∫

(f ′′)2(x)dx
]1/5

, (16)

where

C(K) = k
2/5
2

[∫
K2(u)du

]4/5

(17)

depends only on the kernel. The kernel that is approximately optimal for MISE thus has the smallest

possible value of C(K) subject to the restrictions on the moments of K. If we restrict attention to

kernels that are probability density functions, the optimal kernel is the Epanechnikov kernel Ke(u)

Ke(u) =
3

4
√

5
(1− u2/5)+. (18)

This is the positive part of a parabola.

One can define the relative efficiency of other kernels compared with the Epanechnikov kernel

as the ratio of their values of C(K)5/4. Other common kernels include Tukey’s Biweight (suitably

normalized, this is 15
16

(1 − u2)2
+), a triangular kernel, the rectangular kernel of the naive estimate,

and the Gaussian density. Table 3.1 on p. 43 of Silverman (1990) shows that there is not much

variation in the efficiency: the rectangular kernel is worst, with an efficiency of about 93%; the

efficiency of the Gaussian is about 95%; the efficiency of the triangular kernel is about 99%; and

the efficiency of the Biweight is over 99%. Thus the choice of kernel can reflect other concerns, such

as desired properties of f̂ (continuity, computational complexity, and so on).

Choosing h = h(n) is much more of a concern for the asymptotic behavior of the density

estimate. To a large extent, choosing h is a black art, but there are some automatic strategies that

behave well subject to some assumptions. One of the most popular is least-squares cross-validation,

which is a resampling method related to the jackknife. Here is a sketch of the method, following

Silverman (1990), pp. 48ff.
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The integrated squared error of a density estimate f̂ is∫
(f̂ − f)2dx =

∫
f̂ 2dx− 2

∫
f̂fdx +

∫
f 2dx. (19)

The last term does not involve the density estimate, so it is not in our control. Thus it is enough

to try to minimize

R(f̂) ≡
∫

f̂ 2dx− 2
∫

f̂fdx. (20)

Cross validation estimates R(f̂h) from the data, and chooses h to minimize the estimate. The first

term in R(f̂) can be calculated explicitly from f̂ . Estimating the second term is the crux of the

method. By analogy to the jackknife, define the leave one out kernel density estimate

f̂h,(i)(x) =
1

(n− 1)h

∑
j 6=i

K
(

x−Xj

h

)
. (21)

Let

M0(h) ≡
∫

f̂ 2
h −

2

n

∑
i

f̂h,(i)(Xi). (22)

Let’s compute the expected value of M0(h). First note that

E
1

n

∑
i

f̂h,(i)(Xi) = Ef̂h,(1)(X1)

= E
∫

f̂h,(1)(x)f(x)dx

= E
∫

f̂h(x)f(x)dx. (23)

The last step uses the fact that the expected value of the kernel density estimate depends on K

and h but not on the sample size. Thus

ER(f̂h) = EM0(h), (24)

and M0(h) is an unbiased estimator of the ISE of f̂h, less the term
∫

f 2, which does not depend on

f̂h. Provided M0(h) is close to EM0(h), choosing h to minimize M0(h) should select a good value

of h for minimizing the MISE of the estimate. The form of M0(h) is not computationally efficient;

simplifications are possible, especially if K(·) is symmetric. Moreover, if we use n in place of n− 1

in the denominators, we get a similar score function M1(h) that is easier to compute:

M1(h) =
1

n2h

∑
i

∑
j

K∗
(

Xi −Xj

h

)
+

2

nh
K(0), (25)

where K∗(u) = (K ? K)(u) − 2K(u) (here ? denotes convolution). The score function M1(h) can

be computed very efficiently by Fourier methods; see § 3.5 of Silverman (1990).
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A theorem due to Charles Stone (1984) justifies asymptotically choosing h by cross validation

using the score function M1. Stone’s theorem says that, subject to minor restrictions on K, the

ratio of the integrated squared error choosing h by minimizing M1 to the integrated squared error

for the best choice of h given the sample {Xj} converges to 1 with probability 1 as n →∞.

Cross validation tends to fail when the data have been discretized (binned), because the behavior

of M1(h) at small h is sensitive to rounding and discretization. It can be rescued sometimes by

restricting the optimization to a range of values of h that excludes very small values.

The MISE (or an estimate of it) is but one of many possible score functions that could be used

in a cross validation scheme. For example, one could use the log likelihood instead, which leads to

maximizing the score function

CV(h) =
1

n

n∑
i=1

log f̂h,(i)(Xi). (26)

It turns out that under strong restrictions on f and K, −CV(h) is (within a constant) an unbiased

estimator of the Kullback-Leibler distance between f̂h and f :

I(f, f̂h) ≡
∫

f(x) log
f(x)

f̂h(x)
dx. (27)

The score function CV(h) is not resistant.

1.3 Kernel estimates of multivariate densities

This material is drawn from Chapter 4 of Silverman (1990).

Let {Xj}n
j=1 each take values in IRd, d ≥ 1. Let K : IRd → IR satisfy

∫
IRd K(x)dx = 1. (28)

Typically, the kernel K is a radially symmetric probability distribution such as the standard mul-

tivariate normal, or the multivariate Epanechnikov kernel

Ke(x) ≡ d + 2

2cd

(1− ‖x‖2)+, (29)

where cd is the volume of the unit sphere in IRd:

cd =
∫
IRd 1‖x‖<1dx. (30)

The kernels

K2(x) ≡ 3

π
(1− ‖x‖2)2

+ (31)
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and

K3(x) ≡ 4

π
(1− ‖x‖2)3

+ (32)

have more derivatives than the Epanechnikov kernels, and thus produce smoother density estimates;

also, they are easier to compute than the multivariate normal density.

Given a multivariate kernel function, the multivariate kernel density estimate is

f̂h(x) ≡ 1

nhd

n∑
j=1

K
(

x−Xj

h

)
, (33)

which is directly analogous to the univariate kernel density estimate. The kernel density estimate

is a sum of “bumps” centered at the observations, each with mass 1/n and a common width

that depends on a tuning parameter, the bandwidth h. The bandwidth h is “isotropic” in that

all coordinates are scaled in the same way. If the coordinates are incommensurable (e.g., if the

variances of different coordinates are radically different), it can help to transform the coordinate

system before using the estimator, for example, by transforming so that the covariance matrix of

the observations is the identity matrix. The estimate can then be transformed by the inverse change

of variables to get the density estimate in the original coordinate system. This corresponds to the

estimate

f̂h,S(x) =
1√

|S|nhd

n∑
j=1

k

(
‖x−Xj‖2

S−1

h2

)
, (34)

where ‖x‖2
S−1 ≡ xT S−1x, and k(‖x‖2) = K(x).

Most of the treatment of univariate kernel density estimates carries over, mutatis mutandis , to

the multivariate case. For example, there is an optimal window width for minimizing the (approxi-

mate) MISE; it depends on the smoothness of the underlying density (through
∫
(∇2f)2) and on the

norm of the kernel and on the second moment of the kernel. Stone’s theorem shows that choosing

the bandwidth by cross validation using the score function

M1(h) =
1

n2hd

∑
i

∑
j

K∗
(

Xi −Xj

h

)
+

2

nhd
K(0) (35)

is asymptotically optimal for MISE.

1.3.1 The Curse of Dimensionality

The difficulty of density estimation grows very rapidly as the dimension of the sample space, d,

increases. For example, to get relative mean squared error at 0 to be less than 0.1 in estimating a

multivariate normal density at zero using the optimal kernel requires n = 4 for d = 1, n = 19 for
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d = 2, n = 768 for d = 5, and n = 842, 000 for d = 10 (see Table 4.2 of Silverman, 1990). Partly,

this is because of the behavior of the volume element in high dimensional spaces.

Consider the unit sphere in dimension d. As d grows, the volume of the sphere is increasingly

concentrated in a thin shell near radius r = 1. As a result, regions of low density can contribute

substantially to the probability in higher dimensions, and regions of high density can remain un-

sampled even for relatively large sample sizes when d is large. This makes details of the estimate

matter increasingly as d grows, and makes it harder to estimate the density even where it is large

as d grows.

1.4 Nearest neighbor estimates

This section follows Silverman (1990), § 5.2. We start with the d-dimensional case. For any point

t ∈ IRd, define rk(t) to be the Euclidean distance from t to the kth closest datum in the set {Xj}n
j=1.

Let Vk(t) be the volume in IRd of a sphere of radius rk(t):

Vk(t) = cdr
d
k(t), (36)

where as before cd is the volume of the unit ball in IRd. The nearest neighbor density estimate is

f̂k(t) ≡
k

nVk(t)
=

k

ncdrd
k(t)

. (37)

Usually k is chosen to be small compared with n; k ≈
√

n is typical in dimension d = 1. Larger

values of k produce smoother estimates, but the smoothness varies locally: the effective “window”

is narrower where the local density of data is higher.

Why does the recipe for the nearest neighbor estimate make sense? If the density at t is f(t),

then in a sample of size n, we would expect there to be about nf(t)Vk(t) observations in a small

sphere of volume Vk(t) centered at t. If we set the expected number equal to the observed number

and solve for f , we get the nearest neighbor estimate:

{
nf̂(t)Vk(t) = nf̂(t)cdr

d
k(t) = k

}
⇒
{

f̂(t) =
k

ncdrd
k(t)

}
(38)

At the point t, each datum within a distance rk(t) of t contributes 1/(ncdr
d
k(t)) to the density

estimate—as if the density estimate at t were a kernel estimate with the kernel equal to the indicator

function of the unit ball in IRd divided by the volume of the ball (so the kernel integrates to 1), with

bandwidth rk(t). Of course, this bandwidth depends on t through rk(t), so the nearest neighbor
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estimate can be thought of as a kernel density estimate with spatially varying kernel width. (The

kernel width depends on the point t at which the estimate is sought, not just on the data {Xj}.

This leads to some difficulties—see below.)

Nearest neighbor estimates are not smooth: although rk(t) is continuous in t, its derivative

fails to exist at points where two or more data are at distance rk(t) from t. Moreover, the nearest

neighbor estimate is not itself a density. Consider what happens as ‖t‖ grows. When ‖t‖ is larger

than maxj ‖Xj‖, rk(t) grows linearly with ‖t‖, so the density estimate falls off like ‖t‖−d—which

has infinite integral. This rate of decay does not depend on how the tails of the sample fall off.

Nearest neighbor estimates can be generalized to kernels more complicated than indicator func-

tions. The generalized nearest neighbor estimate using kernel K is

f̂(t) =
1

nrd
k(t)

n∑
j=1

K

(
t−Xj

rk(t)

)
. (39)

This reduces to the simple nearest neighborhood estimate when K is the indicator of the unit ball,

scaled to have integral 1. The tail behavior of the generalized nearest neighbor estimate depends

on details of the kernel K.

Even though at any fixed point, the nearest neighbor estimate is equivalent to a kernel estimate,

it is a different kernel estimate at each point. The kernel estimate is a density because it is a linear

combination of densities, with coefficients that sum to one. Just one “bump” is centered at each

datum. In contrast, with the nearest neighbor estimate, a different bump is centered at each datum

in finding the estimate for different values of t: the bandwidth associated with the contribution of

the jth datum is a function of t, not just of Xj.

1.4.1 Variable Kernel Method

In contrast, the variable kernel method allows the bandwidth associated with each datum to be

different, but holds those bandwidths fixed as t varies. Let djk be the distance from the Xj to its

kth nearest neighbor; i.e., djk = rk+1(Xj). Then the variable kernel estimate is

f̂ =
1

n

n∑
j=1

K
(

t−Xj

hdjk

)
hddd

jk

. (40)

As h or k grows, the estimate gets smoother. This estimate centers one “bump” of mass 1/n at

each datum, but the widths of the bumps depend on the local density of observations through d−1
jk .

Because of this, the estimate is itself a density if the basic kernel K is a density. When the distance
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to the kth nearest neighbor is large, the width of the bump is large. Using djk is an attempt to

adapt the bandwidth to the height of the underlying density. However, there are better estimates

of the local density to use to adjust the bandwidth. Of course, one can allow the bandwidth to vary

in ways other than through djk.

1.4.2 Adaptive Kernel estimates

This material is drawn from Silverman (1990, § 5.3). Instead of using d−1
jk as (proportional to) an

estimate of the local density for picking the bandwidth for the kernel centered at Xj, one could use

a different density estimate. This approach leads to adaptive kernel estimates.

The idea is to make a pilot density estimate, usually highly smoothed, and to base the bandwidth

choice for the final estimate on the pilot. Let f̃(t) be a pilot density estimate for which minj f̃(Xj) >

0. Let α ∈ [0, 1]. Let g be the geometric mean of the values {f̃(Xj)}n
j=1:

g =

 n∏
j=1

f̃(Xj)

1/n

= exp

 1

n

n∑
j=1

log f̃(Xj)

 . (41)

Define

λj =

(
f̃(Xj)

g

)−α

. (42)

The adaptive kernel estimate is

f̂(t) =
1

n

n∑
j=1

K
(

t−Xj

hλj

)
hdλd

j

. (43)

Note that λj plays the role of djk of the variable kernel method. The estimate depends on a number

of tuning constants: h, α, and the tuning constants of the method used to derive the pilot estimate.

The overall bandwidth h plays the same role as before. The sensitivity parameter α controls how

much the bandwidth varies as the pilot estimate varies—the rapidity of variation with f̃ . For

α = 0, the method becomes the ordinary kernel estimate. Silverman (1990) says that “there are

good reasons for setting α = 1/2.” (See his § 5.3.3 and reference to Abramson, 1982.)

Silverman (1990) says that the fine details and smoothness of the pilot estimate don’t matter

much for the final estimate, and recommends using an Epanechnikov kernel estimate with bandwidth

chosen to perform well for a standard distribution, calibrated to have the same variance as the

sample. He does not advocate using cross validation or other computationally intensive schemes for

the pilot estimate.
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Silverman reports simulation studies by Breiman, Meisel and Purcell (1977), showing that with

the bandwidth chosen optimally, the adaptive kernel method performs remarkably better than the

fixed kernel method, even for tame densities such as the normal.

The overall smoothing parameter h for the adaptive kernel estimate can be chosen by least

squares cross validation.

1.4.3 Maximum Penalized Likelihood

This section follows § 5.4 of Silverman (1990); it is connected to an approach to solving inverse

problems, which we will discuss later in the course.

Recall that the MLE of the distribution F is just a sum of point masses at the observations,

each with mass 1/n. This is not very satisfactory as a density estimate because it is so rough. The

idea of maximum penalized likelihood is to give up some likelihood in favor of smoothness. We

need a functional R that assigns a finite positive number to some subset of all density functions.

For example, we might take

R(g) =
∫

(g′′)2dt. (44)

Let F be the set of probability density functions for which R is defined and finite. For a fixed

positive number λ (the smoothing parameter), the penalized log-likelihood function of the density

g is

`λ(g) =
n∑

j=1

log g(Xj)− λR(g). (45)

The maximum penalized likelihood density estimate f̂ is any density in F for which

`λ(f̂) ≥ `λ(g) ∀g ∈ F . (46)

The maximum penalized log likelihood estimate is an “optimal” compromise between maximizing

the likelihood and being as smooth as possible (in the sense of minimizing R). Estimators that

optimize a tradeoff between data fit and simplicity are quite common in many settings; they are

called regularized estimates. The functional R is called the regularization functional or penalty

functional . Measures of fidelity to the data other than the likelihood are also common.

Finding the maximum penalized likelihood estimator can be made more tractable numerically

in a variety of ways, depending on the choice of R. For example, imposing the constraint g > 0

is easier if one works with the square-root of the density or with the logarithm of the density,

although imposing the other part of the constraint g ∈ F—that the density integrates to one—is
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harder then. Discrete approximations to the density (such as truncated expansions in orthogonal

sets of functions) also can simplify the numerics of finding an approximate maximum penalized

likelihood estimate. See Silverman (1990) for references and more detail.

The penalized maximum likelihood approach, using roughness penalties like those described,

treats the underlying density as having homogeneous smoothness. We will talk more about maxi-

mum penalized likelihood in the context of nonparametric regression (function estimation).

1.5 Confidence sets for densities with shape restrictions; lower confi-

dence interval for the number of modes

Reference: Hengartner and Stark (1995).

1.6 Wavelet shrinkage

Reference: Donoho et al. (1993).

1.6.1 Time-frequency localization: windowed Fourier transform and wavelets

1.6.2 Haar wavelets

1.6.3 Unconditional bases

1.6.4 Hard and soft thresholding

1.7 Inverse Problems

Reference: Evans and Stark (2002).

1.7.1 Nonparametric regression

1.7.2 Example: Abel’s problem

Given a frictionless bowling ball with mass m, a stopwatch and the ability to roll the ball with any

desired initial velocity vj = vj(0), find the shape of a (2-dimensional) hill by rolling the ball with

different velocities and measuring how long it takes the ball to return. The measurements have

errors. You can think of this as a way to survey San Francisco on a foggy day.
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The forward problem is to predict how long it takes the ball to return, if we know the shape of

the hill. The inverse problem is to use a finite set of measurements to learn something about the

shape of the hill.

Let’s solve the forward problem. It is convenient to express the shape of the hill as the height

h(s) of the hill at an arc distance s along the surface of the hill from where the ball is launched.

The initial kinetic energy of the ball is

Ej = mv2
j (0)/2. (47)

As the ball ascends, its energy is conserved (the ball is frictionless), but it is partitioned into a

kinetic component and a potential component. The potential energy component at arc distance s

is

EPj(s) = gmh(s), (48)

so, by conservation of energy, the kinetic energy at arc distance s is

EKj(s) = mv2
j (0)/2− gmh(s). (49)

We can find the velocity of the ball at arc distance s as follows

mv2
j (s)/2 = mv2

j (0)/2− gmh(s)

v2
j (s) = v2

j (0)− 2gh(s)

vj(s) =
√

v2
j (0)− 2gh(s). (50)

The velocity of the ball goes to zero (and the ball starts to come back) when v2
j (0) = 2gh(s),

provided the slope of the hill does not vanish there (then the ball would balance and never return).

Let sj satisfy v2
j (0) = 2gh(sj). The time it takes the ball to return is equal to the time it takes the

ball to ascend. The time it takes the ball to come back is thus

τj = 2
∫ sj

s=0

ds√
v2

j (0)− 2gh(s)
. (51)

This is the solution to the forward problem. Each transit time τj is a nonlinear functional of the

hill profile h(s). The inverse problem is to learn something about h(s) from measurements

dj = τj + εj, j = 1, . . . , n, (52)

where {εj}n
j=1 are stochastic errors whose joint distribution is assumed to be known—at least up to

a parameter or two. (Rarely does anybody allow the joint distribution to be more general than a

multivariate zero mean Gaussian with independent components whose variances are known.)
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It turns out that this stylized surveying problem is related to inverse problems in seismology,

helioseismology, and stereology.

1.7.3 General framework for inverse problems

Observe data X drawn from a distribution Prθ where θ is unknown, but it is known that θ ∈ Θ. Use

X and the constraint θ ∈ Θ to learn about θ. For example, we might want to estimate a parameter

g(θ). Assume that Θ contains at least two points; otherwise, we know θ and g(θ) perfectly even

without data.

The parameter g(θ) is identifiable if

{g(θ) 6= g(η)} ⇐ {Pr
θ
6= Pr

η
}, ∀θ, η ∈ Θ. (53)

In most inverse problems, θ is not identifiable. Little general is known about nonlinear inverse

problems, although there are particular nonlinear inverse problems, like the surveying problem

above, that are well understood.

(The “trick” to solving the surveying problem is to work with s(h) instead of h(s), on the

assumption that h(s) is strictly monotonic. Then the forward mapping τ is a linear functional

of s(h), but there are nonlinear constraints–s(h) must also be monotonic. Although hills in San

Francisco are not monotonic, in the seismic problem, there are thermodynamic arguments that the

corresponding quantity—seismic velocity as a function of radius, divided by radius—is monotonic

in Earth’s core. See, e.g. Stark, P.B., 1992. Inference in infinite-dimensional inverse problems:

discretization and duality, J. Geophys. Res., 97 , 14,055–14,082.)

1.7.4 Linear forward and inverse problems

When the forward problem has more structure, more can be said. The best studied class of inverse

problems are linear inverse problems.

A forward problem is linear if the constraint set Θ is a subset of a separable Banach space T

and for some collection {κj}n
j=1 of bounded linear functionals on T ,

Xj = κjθ + εj, (54)

where {εj}n
j=1 are random errors whose distribution does not depend on θ. Usually, such a forward

problem is written

X = Kθ + ε, θ ∈ Θ. (55)
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The corresponding linear inverse problem is to use the data X and the constraint θ ∈ Θ to learn

about g(θ). In a linear inverse problem, the distribution of X depends on θ through Kθ, so if there

exist θ, η ∈ Θ such that

Kθ = Kη but g(θ) 6= g(η) (56)

then g(θ) is not identifiable.

Let’s simplify the setup even further—we assume that T is a Hilbert space, that Θ = T , and

that g is a linear parameter ; that is,

g(aθ + bη) = ag(θ) + bg(η) (57)

for all a, b ∈ IR and all θ, η ∈ Θ. The fundamental theorem of Backus and Gilbert says that then

g(θ) is identifiable if and only if g =
∑n

j=1 ajκj for some constants {aj}. In that case, if Eε = 0,∑
j ajXj is unbiased for g(θ), and if e has covariance matrix Σ, the MSE of this (linear) estimator

is a · Σ · aT . See Evans and Stark (2002) for more details and proofs.

1.8 Methods for inverse problems

There is a huge number of methods for “solving” inverse problems, although what qualifies as a

solution is debatable. These solution methods can be analyzed using traditional statistical measures

of performance, including bias and various loss criteria. Perhaps the most important message is

that without constraints, little can be said. The issue is finding constraints justified by the science

of the situation that still are helpful in reducing the uncertainty.

• Backus-Gilbert estimation. Finding linear functionals close, in some sense, to point evaluators.

• MLE and variants (regularization, maximum penalized likelihood, method of sieves, singular

value truncation and weighting). Trading off fidelity to the data and a measure of complexity

or roughness. With suitable assumptions, can show consistency and good rates of convergence

if the tradeoff is tuned appropriately.

• Bayes estimation. Difficult to justify in infinite-dimensional problems, because prior probabil-

ity distributions on infinite-dimensional spaces are strange—it’s hard to capture constraints

without injecting lots of additional information.

• Minimax estimation. Interesting papers by Donoho and others on estimating linear functionals

or the entire model in the Hilbert space case. Connection between deterministic optimal
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recovery and minimax statistical estimation in the case that the errors are Gaussian, Θ is

convex, and the parameter is a linear functional.

• Shrinkage estimation. Shrinkage can improve MSE of estimates of high-dimensional means.

Can help with multiple Backus-Gilbert estimates.

• Wavelet-vaguelette shrinkage estimation. Analogue of wavelet shrinkage density estimation

we looked at earlier. Can outperform any linear method in some problems. Papers by Donoho,

Johnstone, and others. Key idea is that the wavelet-vaguelette decomposition almost diago-

nalizes both the prior information and the forward problem.

• Strict bounds. Analog of the method for confidence bounds on shape-restricted densities we

looked at earlier in the class. Can get conservative joint confidence sets for arbitrarily many

parameters of the model by finding upper and lower bounds on functionals over a set of models

that satisfies the constraints and is in an infinite-dimensional confidence set based on fit to

the data. Not generally optimal for standard measures of misfit to the data.
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