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Eigth Set of Notes

1 Application of linear programming

Density estimation with shape restrictions. (See Hengartner and Stark, 1995. Finite-sample

con�dence envelopes for shape-restricted densities, Ann. Stat., 23, 525-550.) Suppose we

observe X = fXjgnj=1 i.i.d. F , where F is a distribution with a density f w.r.t. Lebesgue

measure, suppfFg � R
+, and f is monotone decreasing on R+. We seek a con�dence

interval for f(x0) for some x0 � 0. Let F denote not only the distribution (measure), but

also the cdf of the measure: F (x) = F ((�1; x]). Let P be the set of probability measures

on R+, and let Q be the set of subprobability measures on R+. For any measure G 2 Q,

de�ne the Kolmogorov-Smirnov (K-S) norm

kGk � sup
x2R

jG((�1; x])j = sup
x2R

jG(x)j: (1)

Let F̂n be the empirical measure correspoonding to the cdf

F̂n(x) �
1

n
#fXj � xg; (2)
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and let

� = �n(�) =

s
ln 2

�

2n
: (3)

Massart (The tight constant in the Dvoretsky-Kiefer-Wolfowitz inequality, Ann. Prob., 18,

1269-1283, 1990.) shows that for all n,

PF

n
kF � F̂nk > �

o
� �: (4)

De�ne

D = D�
� � fG 2 Q : �� � F̂n(x)�G(x) � �; 8x 2 Rg; (5)

and D� = D�
�. Because of Massart's result,

PF fD� 3 Fg � 1� �: (6)

Let C be those measures in X whose densities are monotone decreasing on R+. Then

PFfC \D� 3 Fg � 1� �: (7)

Consider a �xed functional T : X ! R. We have

PFf inf
G2C\D�

T (G) � T (F ) � sup
G2C\D�

T (G)g � 1 � �; (8)

that is, if we set

T�(X) = inf
G2C\D�

T (G) (9)

and

T+(X) = sup
G2C\D�

T (G); (10)

the interval [T�; T+] is a 1 � � con�dence interval for T (F ). For that matter, let A be an

arbitrary index set, and let fT�g�2A be an arbitrary collection of functionals on X . Then

PF f[T
�

� (X); T
+
� (X)] 3 T�(F )8� 2 Ag � 1� �; (11)

that is, the simultaneous coverage probability for any collection of con�dence intervals derived

from the set C \ D� is at least 1 � �. (We shall discuss simultaneous con�dence intervals

and multiplicity in hypothesis tests in greater detail presently.)

2



Take T (G) = g(y), the value of the density g of the measure G at the point y. Let

T+ = T+(y) = supG2C\D�
g(y) and T� = T�(y) infG2C\D� g(y). Finding T+ and T� are

in�nite-dimensional linear programming problems.

In terms of the densities g, the problem of �nding T� is

inffg(y) : g is monotone, and 8x 2 R+; g(x) � 0; and � � �
Z x

0
g(u)du� F̂n(x) � �g:

(12)

The constraints are linear inequalities in g, and the objective functional is linear in g. The

unknown is in�nite-dimensional, and there are an in�nite number of constraints.

It happens that these problems can be reduced exactly to �nite-dimensional linear pro-

grams. Notice that the maximum vertical distance between G(x) and F̂n(x) must oc-

cur at one of the data Xj . With probability one, the data fXjg are distinct, and the

smallest datum is greater than zero. Wlog assume that the data are ordered such that

0 � X1 < X2 < � � � < Xn < 1. Let N denote the number of elements in the set

f0; yg [ fXjgnj=1. With probability one, N is either n + 1 or n + 2. For j = 1; : : : ; N ,

let yj be the jth smallest element in the set f0; yg [ fXjgnj=1. For any density g(x), de�ne

~g+(x) to be the left-continuous piecewise average of g on the intervals determined by fyjg:

~g+(x) =
N�1X
j=1

1x2[yj;yj+1)
1

yj+1 � yj

Z yj+1

yj

g(u)du: (13)

Then ~g(x) is the density of a subprobability measure. Let ~G be the corresponding measure.

If g(x) is monotone decreasing, so is ~g(x), and k ~G� F̂nkKS = kG� F̂nkKS .
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