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Seventh Set of Notes

1 Optimization

For references, see D.G. Luenberger (1969) Optimization by Vector Space Methods, John

Wiley and Sons, Inc., NY.; E.J. Anderson and P. Nash, 1987, Linear Programming in

Infinite-Dimensional Spaces, Wiley, NY; M.S. Bazaraa and C.M. Shetty, 1979, Nonlinear

Programming: Theory and Algorithms, Wiley, NY; Shor, 1985, Minimization Methods for

Non-Differentiable Functions, Springer-Verlag, NY.

Many questions in statistical theory can be reduced to optimization problems, sometimes

in infinite-dimensional spaces (spaces of functions or measures, for example). For example,

we have just seen in Donoho’s work how the difficulty of certain minimax estimation problems

can be related to the modulus of continuity, whose computation is an optimization problem

over a convex subset of `2.

Some unconstrained optimization problems with differentiable, convex objective func-

tions, are fairly straightforward to solve, e.g., using the calculus of variations. Solving

differentiable, unconstrained, convex problems numerically is not typically difficult (descent
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algorithms can be used), unless evaluating the objective functional or its derivative is ex-

tremely computationally intensive.

Constrained problems, nondifferentiable problems, and nonconvex problems are typically

much harder. Even for convex functions whose derivative exists almost everywhere, the

steepest descent algorithm can converge to a nonstationary point (see Shor, Ch. 2, §2.1
for an example). Nondifferentiable objective functionals arise fairly frequently in statistics.

For example, the absolute value function is not differentiable at zero, so the problem of

finding the median as the solution of the optimization problem of minimizing the sum of the

absolute deviations (or of finding a multivariate generalization of the median) is a convex,

nondifferentiable optimization problem. Similarly, the objective functionals for minimum `1

and minimum `∞ regression are nondifferentiable.

Some quite interesting statistical problems have convex objective functionals, but non-

convex constraints, such as signal recovery problems subject to constraints on the measure

of the support of the signal (sparsity constraints).

Linear equality constraints (such as 〈x, g〉 = 0) are fairly straightforward to deal with;

one can project the problem onto the subspace where the constraint is satisfied. Linear

inequalities are somewhat harder. Two of the most useful tools for solving constrained

infinite-dimensional optimization problems are Fenchel and Lagrange duality.

A cone in a real linear vector space X is a set P ⊂ X such that if x ∈ P , then αx ∈ P

for all α > 0. One can establish a partial order on a vector space X with a convex cone P

(then called the positive cone) by defining x ≥ y if x − y ∈ P . If X is a topological space

(such as a normed space with topology inherited from the norm), and if the interior of the

positive cone P is nonempty in the topology of X , we write x > y if x− y ∈ P ◦, the interior

of P . (Note that this differs from the definition of < we used for a totally ordered set, where

< meant ≤ but not =; here, < derives from topological properties of the positive cone that

defines the order.)

If X is a linear vector space, X ∗ denotes the linear space of all linear functionals defined

on X , and is called the algebraic dual space of X . If X is a normed space, by default X ∗

is the space of bounded linear functionals on X , (called the normed dual space of X ) unless

otherwise specified. Denote by 〈x∗, x〉 the action of the linear functional x∗ ∈ X ∗ on the
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element x ∈ X . The natural mapping from a space X to its second dual X ∗∗ (the dual of its

dual) is 〈x∗∗, x∗〉 = 〈x∗, x〉. Clearly each x ∈ X gives a linear functional x∗∗ on X ∗ this way.

If every (bounded) linear functional on X ∗ can be obtained this way (i.e., if X ∗∗ = X ), X is

said to be reflexive.

The epigraph of a functional f on a set C ⊂ X is

[f, C]+ ≡ {(t, x) ∈ R× X : x ∈ C, f(x) ≤ t}. (1)

If C is convex, [f, C]+ is a convex set in R× X iff f is a convex functional. Similarly, let

[g, D]− ≡ {(t, x) ∈ R× X : x ∈ D, f(x) ≥ r}. (2)

Definition. A linear variety in a vector space X is the translation of a subspace S in

X . That is, if S is a subspace, then for every x ∈ X , S + x is a linear variety. A hyperplane

H in a vector space X is a maximal proper linear variety; that is, a linear variety such

that if Y is another linear variety in X and H ⊂ Y , then either Y = H or Y = X. A

hyperplane can be characterized by a linear functional: every hyperplane can be written

as {x ∈ X : 〈x∗, x〉 + b = 0} for some x∗ ∈ X ∗ and some b ∈ R. Every set of the form

{x ∈ X : 〈x∗, x〉 + b = 0} is a hyperplane. If x∗ is a nonzero linear functional on a normed

vector space X , the hyperplanes {x : 〈x∗, x〉 + b = 0} are closed for every b ∈ R iff x∗ is

continuous.

Theorem 1 Separating hyperplane theorem. Suppose that C, D are convex subsets of a

normed vector space X , that C contains interior points, and that D contains no interior

point of C. Then there is a a hyperplane separating the sets: there is an element x∗ ∈ X ∗

s.t.

sup
x∈C

〈x∗, x〉 ≤ inf
x∈D

〈x∗, x〉. (3)

Thus there is a number b ∈ R s.t.

〈x∗, x〉+ b ≤ 0 ∀x ∈ C

〈x∗, x〉+ b ≥ 0 ∀x ∈ D

(4)
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1.1 Algebraic Duality

We always take infx∈∅ f(x) = ∞ and supx∈∅ f(x) = −∞.

For any functional f on a real linear vector space X with dual X ∗ and any sets C, D ⊂ X
consider the value of the primal problem

v(P) ≡ inf
x∈C∩D

f(x). (5)

Clearly, for any x∗ ∈ X ∗,

v(P) = inf
x∈C∩D

{f(x)− 〈x∗, x〉+ 〈x∗, x〉}
≥ inf

x∈C∩D
〈x∗, x〉+ inf

x∈C∩D
{f(x)− 〈x∗, x〉}

≥ inf
x∈D

〈x∗, x〉+ inf
x∈C

{f(x)− 〈x∗, x〉} (6)

This is true for all x∗, so

inf
x∈C∩D

f(x) ≥ sup
x∗∈X ∗

{
inf
x∈D

〈x∗, x〉+ inf
x∈C

{f(x)− 〈x∗, x〉}
}

= sup
x∗∈X ∗

{D∗[x∗] + C∗[x∗]}, (7)

where

C∗[x∗] ≡ inf
x∈C

{f(x)− 〈x∗, x〉} (8)

and

D∗[x∗] ≡ inf
x∈D

{〈x∗, x〉}. (9)

The only functionals x∗ it is worth considering are those for which C∗ and D∗ are greater

than −∞. Let

C∗ ≡
{
x∗ ∈ X ∗ : inf

x∈C
{f(x)− 〈x∗, x〉} > −∞

}
, (10)

and

D∗ ≡
{
x∗ ∈ X ∗ : inf

x∈D
〈x∗, x〉 > −∞

}
. (11)

Then wlog we can restrict attention to

sup
x∗∈C∗∩D∗

{D∗[x∗] + C∗[x∗]}, (12)

with the supremum defined to be −∞ if C∗ ∩ D∗ = ∅.
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In general, the sup over X ∗ need not equal the inf over X . When it does not, there is

said to be a “duality gap.”

Example. Suppose X is a linear vector space of functions x = x(t) on some fixed domain;

{x∗j}n
j=1 ⊂ X ∗, {x∗j} linearly independent; d : X → Rn, x → (〈x∗j , x〉)n

j=1; Ξ ⊂ Rn is a

bounded subset of Rn, D = {x ∈ X : d(x) ∈ Ξ}. Then one can show that D∗ = span{x∗j}n
j=1

(D is a hypercylinder constrained only in the directions “aligned” with an x∗j ; in other

directions D is unconstrained, so a linear functional with a component in any direction not

in span{x∗j}n
j=1 is unbounded below on D). Thus for any f and C , the infinite-dimensional

problem

inf
x∈C∩D

f(x) (13)

is bounded from below by a finite-dimensional problem on span{x∗j}n
j=1. For particular sets

Ξ and C , and particular functionals f , this can lead to an easy solution for v(P). Continuing

the example, suppose that C = X , that f(x) = 〈x∗0, x〉, and that

Ξ ≡ {γ ∈ Rn : ‖γ − δ‖ ≤ ε}, (14)

for some fixed δ ∈ Rn (an ε-ball in Rn centered at δ). Then C∗ = x∗0, and we already saw

that D∗ = span{x∗j}n
j=1, so C∗∩D∗ = ∅ unless x∗0 =

∑n
j=1 αjx

∗
j for some sequence of constants

α = (αj)
n
j=1. Given a linearly independent set {x∗j}n

j=1 ⊂ X ∗, one can construct a linearly

independent set {xj}n
j=1 ⊂ X such that

〈x∗j , xk〉 = 1j=k. (15)

If indeed x∗0 =
∑n

j=1 αjx
∗
j , then for x∗ ∈ C∗ ∩ D∗

inf
x∈C

〈x∗0, x〉 − 〈x∗, x〉 = 0. (16)

For any x ∈ D, d(x) = δ + ν with ‖ν‖ ≤ ε, so for x ∈ D,

α · d(x) = α · δ + α · ν
≥ α · δ − |α · ν|
≥ α · δ − ‖α‖‖ν‖
≥ α · δ − ε‖α‖. (17)

5



This bound is in fact attained by setting

β = δ − ε
α

‖α‖ (18)

and taking x =
∑

j βjxj. Thus

inf
x∈D

〈x∗, x〉 = α · δ − ε‖α‖. (19)

This gives us

inf
x∈C∩D

〈x∗0, x〉 =




α · δ − ε‖α‖, x∗0 =
∑n

j=1 αjx
∗
j

−∞, otherwise
(20)

There is no duality gap in this problem.

See Stark (1992) J. Geophys. Res., 97, 14,055–14,082, for more examples.

1.2 Fenchel Duality

Fenchel duality establishes conditions under which there is no duality gap in the algebraic

duality relation given in the previous section. The conditions rely on topological consid-

erations, and the version presented here assumes that the spaces are normed, the sets are

convex, etc. Note that the definitions are changed a bit from the last section!

Let X be a normed linear vector space with normed dual space X ∗, and let C and D

be convex subsets of X . Let f : X → R be convex, and let g : X → R be concave. The

conjugate set C∗ of C is

C∗ ≡ {x∗ ∈ X ∗ : sup
x∈C

[〈x∗, x〉 − f(x)] < ∞}. (21)

The conjugate functional f∗ of f is defined on C∗ by

f∗(x∗) = sup
x∈C

[〈x∗, x〉 − f(x)]. (22)

The conjugate set D∗ of D is

D∗ ≡ {x∗ ∈ X ∗ : inf
x∈D

[〈x∗, x〉 − g(x)] > −∞}. (23)

The conjugate functional g∗ of g is defined on D∗ by

g∗(x∗) = inf
x∈D

[〈x∗, x〉 − g(x)]. (24)
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One may show that C∗ and D∗ are convex subsets of X∗, that f∗ is a convex functional, and

that g∗ is a concave functional.

Theorem 2 Fenchel Duality (see Luenberger, 1969, §7.12, Theorem 1). Let X be a normed

space, C and D be convex subsets of X , f a convex functional on X , g a concave functional

on X . Suppose C ∩D contains points in the relative interior of C and D, and that either

[f, C]+ or [g, D]− has nonempty interior. If

v(P) = inf
x∈C∩D

{f(x)− g(x)} > −∞, (25)

then

v(P) = max
x∗∈C∗∩D∗{g∗(x∗)− f∗(x∗)}. (26)

The max on the right is attained by some x∗0 ∈ C∗ ∩D∗. If the infimum is attained by some

x0 ∈ C ∩D, then

max
x∈C

[〈x∗0, x〉 − f(x)] = 〈x∗0, x0〉 − f(x0) (27)

and

min
x∈D

[〈x∗0, x〉 − g(x)] = 〈x∗0, x0〉 − g(x0). (28)

Remark. I cannot see where in the proof of the Fenchel Duality theorem Luenberger uses

the hypothesis that C ∩D contains points in the relative interior of C and D. Furthermore,

that hypothesis is not necessarily satisfied in the example he gives to the min-max theorem

of games—see below (a compact convex subset of a reflexive space does not necessarily have

nonempty interior). Thanks to Jason Schweinsberg and Von Bing Yap for pointing out these

problems! Can anyone see how the hypothesis enters the proof?

Example. The min-max theorem in game theory. Let X be a normed linear vector space

and X ∗ its normed dual. Assume X is reflexive. Player A selects a strategy x from A ⊂ X
and player B selects a strategy from B∗ ⊂ X ∗, without knowledge of player A’s choice.

Player A pays player B 〈x∗, x〉. Player A thus wants to minimize 〈x∗, x〉, while player B

wants to maximize it. Suppose both players seek a minimax strategy: one in which they lose

least (gain most) in the worst case. Thus player A seeks

v− = inf
x∈A

sup
x∗∈B∗

〈x∗, x〉, (29)
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while player B seeks

v+ = sup
x∗∈B∗

inf
x∈A

〈x∗, x〉. (30)

Theorem 3 (Min-max theorem; see Luenberger, §7.13, Theorem 1.) Suppose A and B∗ are

compact and convex. Then

inf
x∈A

sup
x∗∈B∗

〈x∗, x〉 = sup
x∗∈B∗

inf
x∈A

〈x∗, x〉. (31)

Proof. Define

f : X → R

x 7→ max
x∗∈B∗

〈x∗, x〉. (32)

The max is attined because B∗ is compact (by assumption) and x, viewed as an element of

X ∗∗, is a continuous function on B∗. By linearity and the convexity of B∗, for all α ∈ [0, 1],

f(αx + (1− α)y) = max
x∗∈B∗

〈x∗, αx + (1− α)y〉
= max

x∗∈B∗
[〈x∗, αx〉+ 〈x∗, (1− α)y〉]

= max
x∗∈B∗

[α〈x∗, x〉+ (1− α)〈x∗, y〉]
≤ max

x∗∈B∗
α〈x∗, x〉+ max

x∗∈B∗
(1− α)〈x∗, y〉

= αf(x) + (1− α)f(y). (33)

Assignment. Show that f is continuous, and that there exist points in the C ∩D in the

relative interior of C and D.

We seek minx∈A f(x). Apply Fenchel duality, identifying C with X , g = 0, and D with

A. Because D is a compact set, D∗ = X ∗, and

g∗(x∗) = min
x∈A

〈x∗, x〉. (34)

Consider C∗. Suppose x∗1 6∈ B∗. Then (by the separating hyperplane theorem) there exists

x1 ∈ X and α ∈ R such that

〈x∗1, x1〉 − 〈x∗, x1〉 > α > 0, ∀x∗ ∈ B∗. (35)
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Thus letting x = ax1 with a > 0 sufficiently large,

〈x∗1, x〉 − max
x∗∈B∗

〈x∗, x〉 = 〈x∗1, x〉 − f(x) (36)

can be made arbitrarily large, so x∗1 6∈ C∗. On the other hand, if x∗1 ∈ B∗,

sup
x∈X

〈x∗1, x〉 − max
x∗∈B∗

〈x∗, x〉 = 0, (37)

and is attained by x = 0. Thus C∗ = B∗. The conditions of Fenchel duality apply, and hence

min
x∈A

f(x) = max
x∗∈B∗∩X ∗

g∗(x∗) = max
x∗∈B∗

min
x∈A

〈x∗, x〉. (38)

Example (of something): Seminorm minimization in a Hilbert Space, and Splines.

Regularized least squares is an estimator sometimes used in nonparametric regression. The

idea is to find the regression function of minimum Sobolev norm (a norm that involves deriva-

tives of the function) among those that fit the data within an `2 tolerance, or (equivalently)

to find the model that fits the data best in an `2 sense among those whose Sobolev norm

does not exceed some bound.

Recall that a real inner-product space is a real linear vector space X with an additional

operation 〈·, ·〉 : X ×X → R with the properties that for all x, y, z ∈ X and all γ ∈ R,

〈x, y〉 = 〈y, x〉
〈x + y, z〉 = 〈x, z〉+ 〈y, z〉
〈γx, y〉 = γ〈x, y〉
〈x, x〉 ≥ 0

〈x, x〉 = 0 ⇒ x = 0 (39)

The functional ‖x‖ ≡
√
〈x, x〉 is a norm on a (real) inner-product space. A real inner-product

space that is complete in the norm topology (i.e., in which all Cauchy sequences have limits

in the space) is called a Hilbert space. Hilbert spaces are their own normed dual spaces. A

normed vector space X is separable if there is a countable set {xj}∞j=1 such that every element

x ∈ X can be approximated arbitrarily well (in the norm) by a finite linear combination of

{xj}∞j=1. All separable Hilbert spaces are isomorphic to `2. Every real inner product space
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can be “completed” to form a Hilbert space by considering elements to be equivalence classes

of Cauchy sequences.

For any x, y in an inner-product space X , |〈x, y〉| ≤ ‖x‖ · ‖y‖. Two elements x and y in

an inner-product space are said to be orthogonal if 〈x, y〉 = 0; then we write x ⊥ y. If x ⊥ y

then ‖x + y‖2 = ‖x‖2 + ‖y‖2. An element x of an inner product space is orthogonal to a

subset M of the same inner product space if x ⊥ y ∀y ∈ M ; then we write x ⊥ M . Two

subsets M, N of an inner product space are orthogonal if x ⊥ y ∀x ∈ M and ∀y ∈ N ; then

we write M ⊥ N . The orthogonal complement of a set M ⊂ X is

M⊥ = {x ∈ X : x ⊥ M}. (40)

For any M ⊂ X , M⊥ is a closed subspace. If M is a closed subspace of X , each x ∈ X has

a unique decomposition x = m + n where m ∈ M and n ∈ M⊥; we write X = M
⊕

M⊥.

Every finite-dimensional subspace of a Hilbert space is closed.

Lemma 1 Let {xj}n
j=1 ⊂ X be a linearly independent set, M = span{xj}n

j=1, and δ ∈ Rn.

Then

arg min
x∈X

{‖x‖ : 〈xj, x〉 = δj, j = 1, · · · , n} ∈ M. (41)

The minimum is attained, and by a unique element of M .

Proof. M is a closed subspace of X , so we can decompose every x into a sum x = xM +xM⊥

with xM ∈ M and xM⊥ ∈ M⊥, and ‖x‖2 = ‖xM‖2 + ‖xM⊥‖2. Now 〈xj , xM⊥〉 = 0 for all

j, so 〈xj, x〉 = 〈xj, xM〉. Thus if 〈xj, x〉 = δj ∀j, then 〈xj , xM〉 = δj ∀j, but ‖x‖ ≥ ‖xM‖.
Thus it suffices to consider x ∈ M . Because {xj}n

j=1 is a linearly independent set, there is

a unique vector x0 ∈ M s.t. 〈xj, x0〉 = δj. Even if {xj} were not linearly independent, that

the minimum is attained would follow from the fact that M is a closed subspace of X , and

therefore complete. Any sequence of elements of M for which the norm converges to the

minimal value can be shown to be a Cauchy sequence within M , so its limit is in M . The

uniqueness would then follow from the strict convexity of the norm in Hilbert space.

Remark. Essentially the same proof shows that if M is a closed subspace and x ∈ X ,

min
m∈M

‖x−m‖ (42)
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is attained by an element m0 of M , and that x−m0 ∈ M⊥.

Remark. Let 〈x, x〉 = (〈xj, x〉)n
j=1. It follows from Lemma 1 that if Ξ ⊂ Rn, and x0 solves

min{‖x‖ : 〈x, x〉 ∈ Ξ}, (43)

then x0 ∈ M = span{xj}n
j=1.

Let S be a closed subspace of X . Then

|x|S = min
s∈S

‖x− s‖ (44)

is a seminorm.

Assignment. Verify that for a closed subspace S of a Hilbert space X , | · |S is a seminorm.

Let S = span{sk}m
k=1 be a finite-dimensional (and therefore closed) subspace of X . Con-

sider the problem of finding

min{|x|S : 〈x, x〉 = δ}, (45)

with {xj}n
j=1 linearly independent. Any x can be decomposed into xS + xS⊥, with xS ∈ S

and xS⊥ ∈ S⊥. Let 〈x, S〉 = {〈x, s〉 : s ∈ S}. Taking Ξ = δ + 〈x, S〉, the problem becomes

min{‖x‖ : 〈x, x〉 ∈ Ξ}. (46)

The optimal x0 is thus a linear combination of {xj}n
j=1, plus an element of S; we restrict

attention to the subspace of X consisting of linear combinations of elements of S and {xj}n
j=1.

Define Γ to be the n by n matrix with elements Γij = 〈xi, xj〉. Because {xj} is linearly

independent and 〈·, ·〉 is symmetric, Γ is a positive-definite symmetric matrix. Let Λ be the

n by m matrix with elements Λij = 〈xi, sj〉. Write

x = γ · x + λ · s =
n∑

j=1

γjxj +
m∑

j=1

λjsj. (47)

The component of x in S does not contribute to |x|S, so |x|2S ≤ γ · Γ · γ, with equality if

γ · x ⊥ S. For the optimal x, that must hold; otherwise, the component could be absorbed

into xS, thereby decreasing |x|S. Thus the seminorm minimization problem is to find

v(P) = min
γ∈Rn,λ∈Rm

{〈γ · x, γ · x〉 : 〈x, λ · s + γ · x〉 = δ}
= min{γ · Γ · γ : Γ · γ + Λ · λ = δ} (48)
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As just argued, for the optimal x, 〈sj , γ · x〉 = 0, j = 1, · · · , m, so ΛT · γ = 0. This gives the

coefficients of x through solving

 Γ Λ

ΛT 0


 ·


 γ

λ


 =


 δ

0


 , (49)

which has a unique solution if the matrix on the left is nonsingular. That holds if the

projections of {sj} onto span{xj} are linearly independent.

This was for the case that 〈x, x〉 = δ. If instead we require only 〈x, x〉 ∈ Ξ, the same

argument shows that the optimal x0 is a linear combination of {xj}n
j=1 ∪ {sj}m

j=1.

1.3 Quadratic Smoothing Splines

Let X be the set of functions x = x(t) on the interval [0, 1] that are absolutely continuous,

have absolutely continuous first derivatives, and have Lebesgue square-integrable second

derivatives. Let x′ = x′(t) = dx/dt, and x′′ = x′′(t) = d2x/dt2. Endow X with the norm

‖x‖2 = x2(0) + |x′(0)|2 +
∫ 1

0
(x′′(t))2

dt. (50)

This norm derives from the inner product

〈x, y〉 = x(0)y(0) + x′(0)y′(0) +
∫ 1

0
x′′(t)y′′(t)dt. (51)

(I.e., ‖x‖ =
√

(〈x, x〉).)
Problem. Show that X is indeed a Hilbert space: verify that 〈·, ·〉 is an inner product, and

that X is complete w.r.t. the induced norm topology.

The space X is in fact a reproducing kernel Hilbert space (RKHS). A RKHS is a Hilbert

space of functions x = x(t) for which the functional that evaluates each function x at the

point t0 (the point-evaluator) is a bounded linear functional; that is, evaluating any x at the

point t0 can be written as the inner product of x with a function et0 ∈ X . (Clearly, point-

evaluation is linear if the addition of functions and multiplication of functions by scalars is

defined in the standard way:

(x + y)(t) = x(t) + y(t), x, y ∈ X
(αx)(t) = α(x(t)), x ∈ X , α ∈ R.
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The issue is whether this linear functional is bounded.) In the present case,

x(t0) = x(0) + x′(0)t0 +
∫ t0

0
du

∫ u

0
dsx′′(s)

= x(0) + x′(0)t0 +
∫ 1

0
du1u≤t0

∫ 1

0
dsx′′(s)1s≤u

= x(0) + x′(0)t0 +
∫ 1

0
dsx′′(s)

∫ 1

0
du1u≤t01u≥s

= x(0) + x′(0)t0 +
∫ 1

0
dsx′′(s)(t0 − s)+. (52)

Formally, this looks like the inner product with an element et0 ∈ X whose value at 0 is 1,

whose derivative at 0 is t0, and whose second derivative is e′′t0(t) = (t0 − t)+. The question

is whether e(t) ∈ X . It is: it is absolutely continuous and has absolutely continuous first

derivative, and bounded second derivative, so its X -norm is finite. We have

et0(t) =




1 + t0t + t0
t2

2
− t3

6
t ≤ t0

1 + t0t + t
t20
2
− t30

6
t > t0.

(53)

For any collection of distinct points {tj}n
j=1, the set of functions {etj}n

j=1 ⊂ X is linearly

independent.

Define the seminorm |x| for x ∈ X by

|x|2 =
∫ 1

0
(x′′(t))2 dt. (54)

Let S = span{1, t}. Then S⊥ ≡ {x ∈ X : x(0) = x′(0) = 0}. The seminorm | · | can be

viewed as the square of the norm of the orthogonal projection PS⊥ of x onto the (closed)

subspace S⊥; i.e.,

|x| = ‖PS⊥x‖ = inf
`∈S

‖x− `‖ = ‖x− PSx‖. (55)

This is a continuous functional on X : consider a sequence xk → x in the norm. The

operator norm of a Hilbert-space projection is unity; that is, for any subspace M ⊂ X ,

‖PMx‖ ≤ 1×‖x‖. By the triangle inequality, ‖x+(y−x)‖ ≤ ‖x‖+‖y−x‖, and ‖y+(x−y)‖ ≤
‖y + ‖x− y‖; together these imply that |‖x‖ − ‖y‖| ≤ ‖x− y‖. Thus

|‖PS⊥xk‖ − ‖PS⊥xj‖| ≤ ‖PS⊥xk − PS⊥xj‖
= ‖PS⊥(xk − xj)‖

≤ ‖xk − xj‖ → 0 (56)
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Now S is finite dimensional, and therefore closed, so we have X = S
⊕

S⊥. For any x ∈ X ,

let xS + xS⊥ be the (unique) decomposition of x into its components xS ∈ S and xS⊥ ∈ S⊥.

Then |x| = ‖xS⊥‖. Let ej = etj , j = 1, · · · , n. Let 〈e, x〉 = (〈ej, x〉)n
j=1. Because each ej is

a continuous linear functional on X and the two-norm on Rn is continuous, for any δ ∈ Rn

and any ε > 0,

D ≡ {x ∈ X : ‖〈e, x〉 − δ‖ ≤ ε} (57)

is a closed convex subset of X . The smoothing spline optimization problem is to find a

function x0 that attains v(P),

v(P) ≡ inf
x∈D

|x|, (58)

which is a seminorm minimization problem of the type just explored. It follows that v(P)

is attained, and the optimal vector x0 is a linear combination of 1, t, and {ej}n
j=1. That

is, x0 is an absolutely continuous piecewise cubic function with absolutely continuous first

derivative and square-integrable second derivative.

To try to add some intuition, consider what the solution would be like were {ej}n
j=1 ⊥ S.

Then there would be no advantage to including an element of S in the solution, and the

optimal x0 would just be a linear combination of {ej}. However, if the subspace spanned by

{ej} is not orthogonal to S, a part of the data can be produced by an element of S. The left

over part of the data can still be produced using just a linear combination of {ej}, and there

is no advantage to going outside the subspace spanned by S ∪ {ej}. Define Γij = 〈ei, ej〉
and Λij = 〈ei, sj〉. The seminorm ignores any component of S remaining in the “extra”

linear combination of {ej}, so the optimal solution is of the form x0 = x0S + x0S⊥, where

x0S⊥ = α · e with Λ · α = 0.

We can also apply Fenchel duality to this problem. Let f(x) = |x|2S, C = X , and g(x) = 0.

Because {ej} is a linearly independent subset of X and f is continuous, provided ε > 0, the

epigraph [f, D]+ has nonempty relative interior. The conjugate set C∗ of C is

C∗ ≡ {x∗ ∈ X ∗ : sup
x∈C

[〈x∗, x〉 − f(x)] < ∞}
= {x ∈ X : sup

y∈X
[〈x, y〉 − |y|] < ∞}

= S⊥ ∩B(1), (59)
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where B(1) = {x ∈ X : ‖x‖ ≤ 1}. The dual functional of f is

f∗(x∗) = sup
x∈C

[〈x∗, x〉 − f(x)]

= sup
x∈X

[〈x∗, x〉 − |x|2S]

=




0, x∗ ∈ S⊥ ∩B(1)

∞, otherwise ,
(60)

The conjugate set D∗ of D is

D∗ ≡ {x ∈ X : inf
y∈D

[〈x, y〉 − g(y)] > −∞}
= {x ∈ X : inf

y∈D
[〈x, y〉] > −∞}

= span{ej}n
j=1. (61)

The conjugate functional g∗ of g is

g∗(x∗) = inf
x∈D

[〈x∗, x〉 − g(x)]

=




−∞, x∗ 6∈ span{ej}n
j=1

α · δ − ε‖α‖, x∗ =
∑

j αjej,
(62)

on substituting the result we obtained in the section on algebraic duality. This leads to the

dual problem

v(D) = max
α∈Rn:

∑
j
αjej⊥S;‖α·e‖≤1

{α · δ − ε‖α‖}. (63)

Taking Λ and Γ to be defined as above, this yields

v(D) = max
α∈Rn:α·Λ=0;α·Γ·α≤1

{α · δ − ε‖α‖}. (64)

This maximum is attained by some x∗0 =
∑

j αjej. Because the value of the primal problem

is also attained by some x0 ∈ X , we can use the last part of the Fenchel duality theorem to

characterize x0:

min
x∈D

〈x∗0, x〉 = α · δ − ε‖α‖
= 〈x∗0, x0〉, (65)

and

max
x∈C

[〈x∗0, x〉 − |x|] = 〈x∗0, x0〉 − |x0| = 0. (66)

One can use these relations to find x0 explicitly in terms of α.
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1.4 Lagrange Duality

Theorem 4 (See D.G. Luenberger, 1969. Optimization by Vector Space Methods, Wiley,

NY., §8.6, Theorem 1.) Let

µ = inf{f(x) : x ∈ C, G(x) ≤ 0 ∈ Z}, (67)

where C is a convex subset of a linear vector space X , f is a real-valued convex functional

on C ⊂ X , G is a convex mapping from C into a normed space Z with positive cone P ,

which is assumed to have non-empty interior. Let Z∗ be the normed dual space of Z (the

space of all bounded linear functionals on Z), and let P ∗ be the positive cone in Z∗ induced

by P (the set of linear functionals z∗ ∈ Z∗ that are nonnegative for all z ∈ P ). Suppose

that −∞ < µ < ∞, and that ∃y ∈ C s.t. G(y) < c (G(y) is in the interior of θ − P ). For

z∗ ∈ P ∗ define

φ(z∗) ≡ inf
x∈C

{f(x) + 〈z∗, G(x)〉. (68)

Then

µ = inf
G(x)≤0, x∈C

f(x) = max
z∗≥0

φ(z∗) (69)

The maximum on the right is attained by some z∗0 ≥ 0. If the infimum on the left is attained

by some x0 ∈ C, then

〈z∗0 , G(x0)〉 = 0, (70)

and x0 maximizes

f(x) + 〈z∗0 , G(x)〉 (71)

over all x ∈ C.

Example: Linear Programming Let C be the positive orthant in Rn. Define Z = Rm,

endowed with the supremum norm ‖z‖∞ = max1≤i≤n |zi|, and the positive cone P = {z :

zj ≥ 0, j = 1, . . . , m}. Note that P has nonempty interior in the sup-norm topology. Let

c ∈ Rm. The dual space of Z is Z∗ = Rm; its induced positive cone is the usual positive

orthant. Let A be an m by n matrix, and let G(x) = A · x − c. Let f(x) = f · x for some

f ∈ Rn. We seek

µ = inf
x≥0∈Rn

{f · x : A · x− c ≤ 0}. (72)
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This is of the canonical form given.

Suppose there exists x ≥ 0 ∈ Rn s.t. A · x < 0, and that µ is finite. The theorem says

that

µ = max
y∈Rm:y≥0

inf
x∈Rn:x≥0

{f · x + y · (A · x− c)}. (73)

The infimum is −∞ unless f + y · A ≥ 0, in which case it is −y · c.
The dual problem is thus

max
y≥0:−AT ·y−f≤0

−c · y, (74)

which is another linear program.

Example: Quadratic Programming. Let Ω = Rn, b ∈ Rn, Q a positive-definite, sym-

metric n by n matrix, A an m by n matrix, c ∈ Rm. We seek

v(P) = min
x∈Rn:A·x≤c

1

2
x ·Q · x− b · x. (75)

This is called a quadratic program. If there exists x s.t. A · x < c, then

v(P) = max
λ≥0

min
x
{1

2
x ·Q · x− b · x + λ · (A · x− c)}. (76)

In this case, the minimization problem is the unconstrained, and is solved by

x = Q−1(b− A · λ). (77)

Let R = AQ−1AT and d = c− AQ−1b. Then

v(P) = max
λ≥0

{
−1

2
λ · R · λ− λ · d− 1

2
b ·Q−1 · b

}
, (78)

which is another quadratic program. If m < n, the new (dual) program can be substantially

simpler than the original.
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