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Sixth Set of Notes

1 Using the Bounded Normal Mean to Study Higher

Dimensional Problems

Donoho (1994, Ann. Stat., 22, 238{270) shows how to connect certain in�nitely parametric

problems with Gaussian data errors to the one-dimensional problem of estimating a bounded

normal mean. The connection is through the notion of the \hardest one-dimensional sub-

problem."

We shall change notation in this section. Let X be a convex subset of `2, the space of

square-summable sequences. Suppose we observe

y = Kx+ z; (1)

where x 2 X , K is a linear operator from X into Rn (with n possibly in�nite), z is a noise

vector, and we want to estimate an a�ne functional L(x), so as to do as well as possible

for the worst case x 2 X (minimax). Donoho relates the di�culty of this problem when z

is chosen maliciously by a clever opponent, subject only to the constraint kzk2 � �2 (the
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optimal recovery problem) to the di�culty of the problem when z is chosen randomly as a

Gaussian noise vector with covariance matrix �2I. By \di�culty" is meant a measure of the

best, worst-case error of reconstruction, either as a maximum (for optimal recovery) or as

risk (for the minimax problem). Examples of problems that can be cast in this form include

nonparametric regression and density estimation; think of x as the coe�cients of a function f

in some orthonormal basis. The functional L(x) could be the value of the regression function

or density at a point, a derivative at a point, or a weighted average over some interval.

Donoho considers squared-error loss, absolute error loss, and length of a �xed-length

con�dence interval. We'll just go over squared-error loss. The other results are analogous,

but involve the other measures of the di�culty of estimating a bounded normal mean.

De�ne the minimax a�ne risk for squared-error loss

R�
A(�;X ) = inf

L̂ a�ne
sup
x2X

E(L̂(y)� L(x))2 (2)

and the minimax risk for squared-error loss

R�
N (�;X ) = inf

L̂

sup
x2X

E(L̂(y)� L(x))2: (3)

Let �A(�; �) be the a�ne minimax MSE for estimating � from data X � N(�; �2) subject

to � 2 � = [��; � ], and let �N(�; �) be the minimax MSE for the same problem.

Suppose x were known to lie not just in X , but in a one-dimensional subfamily of X :

[x�1; x1] = f�x�1 + (1� �)x1 : � 2 [0; 1]g; (4)

with x�1 and x1 in X . By convexity, [x�1; x1] � X , so clearly

R�
A(�;X ) � R�

A(�; [x�1; x1]); (5)

and similarly for R�
N . Furthermore,

R�
A(�;X ) � sup

x
�1;x12X

R�
A(�; [x�1; x1]); (6)

and similarly for R�
N .

Consider how di�cult the problem would be if it were known that x was in the family

[x�1; x1]. Let x0 = (x�1+x1)=2, w0 = K(x1�x�1)=kK(x1�x�1)k. Let � = hw0;Kx�Kx0i.
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Let � = kK(x1 � x�1)k=2. If x 2 [x�1; x1], the parameter � 2 [��; � ], and the distribution

of Y = hw0; y �Kx0i is N(�; �2), so estimating � is just a bounded normal mean problem.

We already know something about the minimax MSE di�culty of such problems. If �(�) is

minimax for estimating � from X � N(�; �2) with � 2 [��; � ], then �(Y ) is minimax for

estimating �.

Clearly, there are functions of y other than Y that we might consider in trying to estimate

�, but Y is su�cient for �, so we can do at least as well just using it. Note that the minimax

risk in the problem of estimating s�+ t from Y has s2 times the minimax risk of estimating

� from Y . Restricting L to the subfamily [x�1; x1] reduces L to an a�ne function of �:

L(x) = L(x0) + s�, where

s =
L(x1)� L(x�1)

kKx1 �Kx�1k
: (7)

Thus the minimax MSE risk for estimating Lx from y, if we know that x 2 [[x�1; x1], is

R�
A(�; [x�1; x1]) =

"
L(x1)� L(x�1)

kKx1 �Kx�1k

#2
�A(kKx1 �Kx�1k=2; �); (8)

and similarly for R�
N in terms of �n(�; �).

For v 2 X , de�ne the seminorm kvkK � kKvk, where kKvk is the ordinary Euclidean

norm. The modulus of continuity of L with respect to the seminorm k � kK over X is

!(�;L;K;X ) � sup
x
�1;x12X

fjL(x1)� L(x�1)j : kx1 � x�1kK � �g: (9)

Donoho makes the following de�nitions: L is well-de�ned if the modulus of continuity of L

with respect to the norm k � k over X is continuous at zero; i.e., if

lim
�#0

!(�;L; I;X ) = 0: (10)

The operator K is well-de�ned if the modulus of continuity of K over X for the `2 norm is

continuous at 0:

lim
�#0

sup
x
�1;x12X ; kx1�x�1k��

kKx1 �Kx�1k = 0; (11)

where the norm is the usual Euclidean norm.

Consider now the di�culty of the hardest one-dimensional subproblem:

sup
[x
�1;x1]2X

R�
A(�; [x�1; x1]) = sup

��0
sup

x
�1 ;x12X ; kx1�x�1kK=�

"
L(x1)� L(x�1)

�

#2
�A(�=2; �)
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= sup
��0

"
!(�)

�

#2
�A(�=2; �): (12)

Lemma 1 (Donoho, 1994, Lemma 2) If X is closed, convex, and bounded, if L and K are

well-de�ned, and if !(�;L;K;X ) is �nite for each � � 0, then for each � � 0, there exists

x�1; x1 2 X s.t. kx1 � x�1kK � � and jL(x1)� L(x�1)j = !(�). Also, there exists a hardest

one-dimensional subfamily for a�ne estimates, that is, a pair x�1; x1 2 X s.t.

R�
A(�; [x�1; x1]) = sup

��0

"
!(�)

�

#2
�A(�=2; �): (13)

This lemma follows from results on convexity and weak convergence.

The proof of this lemma relies on characterizing the superdi�erential

Theorem 1 (Donoho, 1994, Theorem 1.) If X is closed, bounded, and convex, if L and K

are well-de�ned, and if !(�) is �nite for every � � 0, then the a�ne di�culty of the full

problem is equal to the a�ne di�culty of a hardest one-dimensional subproblem:

R�
A(�) = max

x1;x�12X
R�
A(�; [x�1; x1]): (14)

The estimator that is minimax for a hardest one-dimensional subproblem is minimax for the

full problem.

Donoho's proof of Theorem 1 relies on showing that there exists an a�ne estimator of

the form

L0(y) = L(x0) + dhw0; y �Kx0i (15)

that (1) is minimax for the subproblem [x�1; x1], and (2) attains its worst-case risk over all

of X in the subproblem [x�1; x1]. That is done using results from convex analysis to �nd

a particular value of d, then showing that for that d, (1) and (2) hold. The construction

of d Dohono uses gives (1) directly. Because the variance of L0 does not depend on x, the

dependence of the risk on x is through the bias of L0. If the bias is at least as large within

the subproblem as anywhere else, the maximum risk is attained in the subproblem. Donoho

establishes the second property by showing that the absolute value of the bias of L0(y) is

larger at x1 than for any other x 2 X .

4



Theorem 2 (Donoho, 1994, Theorem 2.) If L is a�ne, if X is convex, and if L and K are

well-de�ned, then

R�
A(�) = sup

��0

"
!(�)

�

#2
�A(�=2; �): (16)

Corollary 1 (Donoho, 1994, Corollary 1.) Under the assumptions of Theorem 2,

R�
A(�) � 1:25R�

N (�): (17)

Corollary 2 (Donoho, 1994, Corollary 2.) Under the assumptions of Theorem 2,

�N(1=2; 1)!
2(�) � R�

N (�) � R�
A(�) � !2(�); (18)

so the modulus of continuity determines the minimax risk, up to a constant factor.

Proof. The modulus of continuity of a linear functional over a convex set is subadditive:

!(�1 + �2) � !(�1) + !(�2); (19)

as we may readily show.

!(�1 + �2) = sup
x1;x�12X :kx1�x�1kK��1+�2

jL(x1)� L(x�1)j

� sup
x1;x�1;x2;x�22X :kx1�x�1kK��1;kx2�x�2k��2

jL(x2)� L(x�2) + L(x1)� L(x�1)j

� sup
x1;x�1;x2;x�22X :kx1�x�1kK��1;kx2�x�2k��2

jL(x2)� L(x�2)j+ jL(x1)� L(x�1)j

� sup
x1;x�12X :kx1�x�1kK��1

jL(x1)� L(x�1)j+ sup
x2;x�22X :kx2�x�2k��2

jL(x2)� L(x�2)j

= !(�1) + !(�2): (20)

The convexity of X was used in the second step. Obviously, !(�) is monotone increasing

for � � 0. Because ! is subadditive (and by assumption !(0) = 0), !(�)=� is a decreasing

function of � for � � 0. Therefore,

sup
���

"
!(�)

�

#2
�A(�=2; �) �

"
!(�)

�

#2
sup
���

�A(�=2; �) = !2(�); (21)

because �A(�=2; �) ! �2 as � ! 1. Using the monotonicity of ! and the fact that

�A(�=2; �) � �2,

sup
���

"
!(�)

�

#2
�A(�=2; �) � !2(�) sup

���
��2�A(�=2; �) � !2(�): (22)

5



Thus

R�
A(�) � !2; (23)

the lower bound is part of Theorem 2.

Donoho uses this bound to calculate the minimax rates of convergence in certain problems

in terms of the rate at which the modulus of continuity goes to zero as � # 0.

Donoho also points out that the maximum risk of an a�ne estimator for convex X and

well-de�ned L and K is the same for X and the closure of X , so it is not necessary to assume

that X is closed.

Donoho gives a variety of applications that can be cast in the form of the canonical

problem; here are a few.

Approximately Linear Models. Observe

yi = a+ �ti + �i + zi; i = 1; : : : ; n; (24)

a, � unknown reals, �i unknown except for j�ij � ci, i = 1; : : : ; n, and fzig i.i.d. N(0; �2).

Seek to estimate �.

Set x = (a; �; �1; : : : ; �n), (Kx)i = a + �ti + �i, Lx = �, X = R2 � �, where � �

f(b1; : : : bn) : jbij � ci; i = 1; : : : ; ng. This is an instance of the general problem (with X

convex but unbounded).

Assignment. Let ci = 1, i = 1; � � � ; n. Let the domain be [0; 1], and let ti = (i� 1)=(n� 1).

Find !(�). Does !(�)! 0 as � ! 0? Find the minimax a�ne estimator of �.

Semiparametric Models. Observe

yi = �ti + f(ui) + zi; i = 1; : : : ; n; (25)

with � an unknown real, ftig and fuig known reals, f unknown except f 2 F (convex), and

fzig iid N(0; �2).

Setting �i = f(ui), � = f(�i) : �i = f(ui) for some f 2 Fg transforms this to an instance

of an approximately linear model; convexity of F yields convexity of �.

Nonparametric Regression. Observe

yi = f(ti) + zi; i = 1; : : : ; n; (26)
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f 2 F , a convex class of L2 functions on a domain D � Rd, ftig � D, fzig iid N(0; �2). We

want to estimate a linear functional T (f), such as T0(f) = f(t0) or T1(f) = f 0(t0).

Let f�j(t)g1j=1 be an orthonormal basis for L2(D), xj = xj(f) = hf; �ji, x = (xj),

X = f(xj(f)) : f 2 Fg, (Kx)i =
P

j xj�j(ti), L(x) = T (f).

Linear Inverse Problems. Observe

yi = (Pf)(ti) + zi; i = 1; : : : ; n; (27)

with P a linear operator (such as a convolution). This is the same as nonparametric regres-

sion, but with (Kx)i =
P

j xj(P�j)(ti).
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