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Fifth Set of Notes

1 More on the Bounded Normal Mean

Lemma 1 Stein's Lemma. (See Evans and Stark, 1996. Ann. Stat., 24, 809-815, for

a substantial generalization.) Suppose X � N(�; 1), and that �(�) is di�erentiable, with

E�j�0(X)j < 1, limx!�1 �(x) expf�(x � �)2=2g = 0, and that E�[�(X)(X � �)] is �nite.

Then

E�[�(X)(X � �)] = E��
0(X): (1)

Proof. Let �(x) be the standard normal density. Integrate by parts:

E�[�(X)(X � �)] =
Z 1

�1
�(x)(x� �)�(x� �)dx

=
Z 1

�1
�(x)(x� �)�(x)dx

= ��(x)�(x)j1�1 +
Z 1

�1
�0(x)�(x)dx

=
Z 1

�1
�0(x)�(x)dx

= E��
0(X): (2)
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Lemma 2 Consider estimating the mean � of a normal distribution with unit variance using

an estimator � that satis�es the conditions of Stein's Lemma. For squared-error loss,

R(�; �) = 1� E�(2 
0(X) �  2(X)); (3)

where  (x) = x� �(x).

Proof.

R(�; �) = E�(� � �(X))2

= E� (� �X +X � �(X))2

= E� (�(X � �) +  (X))2

= E�
�
(X � �)2 � 2(X � �) (X) +  (X)2

�
= 1 � E�

�
2 0(X)�  2(X)

�
; (4)

using the lemma in the last step.

Bickel (1981, Ann. Stat., 9, 1301-1309) studies the minimax problem as the bound goes

to in�nity and �nds the asymptotic form of the least-favorable prior. We have a single

observation X � N(�; 1), with � 2 � = [�m;m]. The loss function `(�; a) = j� � aj2. The
action space is A = R (which we might as well limit to [�m;m] if we can). The \natural"

estimator is �0(x) = x, and the maximum likelihood estimator is the truncation estimator:

�MLE(x) =

8>>>>><
>>>>>:

m; x � m

x; jxj < m;

�m;x � �m
(5)

Clearly, the risk of �0 is unity for all �, the maximum risk of the MLE is for � = 0, and the

minimum risk is for � = �m.

Lemma 3 (Bickel, 1981; special case of Brown, 1971) Suppose X � N(�; 1), � 2 �, � � �.

Let f� be the density of the marginal distribution of X:

f�(x) = � ? �(x) =
Z 1

�1
�(x� �)�(d�): (6)

The Bayes risk for � for squared-error loss is

r(�) = 1�
Z 1

�1

(f 0�(x))
2

f�(x)
dx: (7)
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Proof. The Bayes estimator for prior � is the posterior mean of � given x. The derivative

of f�(x) with respect to x is

d

dx
f�(x) =

Z 1

�1

d

dx
�(x� �)�(d�)

=
Z 1

�1
(�(x� �))�(x� �)�(d�)

= �xf�(x) +
Z 1

�1
��(x� �)�(d�)

= (�x+ E(�jx))f�(x); (8)

so the posterior mean of � given x is

�(x) = ��(x) = x+ f 0�(x)=f�(x): (9)

Applying the previous lemma, with  (x) = x� �(x) = �f 0�(x)=f�(x) gives the risk at � of

this estimator for squared-error loss to be

1� E�
�
2 0(X)�  2(X)

�
= 1� E�

�
�2f 00� (X)=f�(X) + 2(f 0�(X))2=f2� (X)� (f 0�(X))2=f2�(X)

�
= 1� E�

�
f 0�(X))2=f2�(X)� 2f 00� (X)=f�(X)

�
: (10)

Taking the expectation with respect to � to �nd the Bayes risk, and using Fubini's Theorem

yields

r(�) = E�R(�; ��) = 1 �
Z 1

�1

Z 1

�1

(f 0�(x))
2 � 2f 00� (x)f�(x)

f2� (x)
�(x� �)�(d�)dx

= 1 �
Z 1

�1

(f 0�(x))
2 � 2f 00� (x)f�(x)

f2�(x)
f�(x)dx

= 1 �
Z 1

�1

(f 0�(x))
2

f�(x)
dx+ 2f 0�(x)j1x=�1 : (11)

Because f� is the result of convolution with a Gaussian density, its derivatives of all orders

vanish as x! �1, so we have

r(�) = 1�
Z 1

�1

(f 0�(x))
2

f�(x)
dx: (12)

Note that for a distribution F with absolutely continuous density f , the Fisher information

is

I(F ) =
Z 1

�1

(f 0(x))2

f(x)
dx; (13)
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so the equality just established is r(�) = 1 � I(� ? �), where � is the standard normal

distribution. Thus we have a relation between the Bayes risk for a given prior on � and the

Fisher information of the marginal distribution of the observation X for that prior. The

least favorable prior is that for which the Fisher information of � ? � is minimal.

Let �(m) be the minimax risk for squared-error loss with � = [�m;m], and let r(�)

be the Bayes risk for squared-error loss using prior � on �. Bickel (1981) uses the relation

between the Bayes risk and the Fisher information, and properties of the Fisher information,

to show that if �1 is the distribution on [�1; 1] with density

g1(s) =

8><
>:

cos2(s�=2); jsj � 1

0; otherwise;
(14)

and �m is the distribution on [�m;m] with density

gm(s) = m�1g1(s=m); (15)

then the priors f�mg are approximately least favorable.

Theorem 1 (Bickel, 1981, Theorem 2.1). As m!1,

�(m) = r(�m) + o(m�2); (16)

and

r(�m) = 1� �2

m2
+ o(m�2): (17)

Let �0m be the least favorable prior when � = [�m;m], and let �(m)
1 be the distribution

obtained by scaling �0m to [�1; 1]: �(m)
1 (s) = �0m(ms). Then �

(m)
1 converges weakly to �1.

Perhaps surprisingly, the Bayes estimators ��m(x) are not asymptotically minimax (in-

deed, limsupmR(m; ��m) > 1, so it does not dominate the naive estimator �(x) = x). Bickel

(1981) also shows how to modify the estimator to be asymptotically minimax to order m�2.

Casella and Strawderman (1981, Ann. Stat., 9, 870-878) and Gatsonis, MacGibbon and

Strawderman (1987, Stat. Prob. Lett., 6, 21-30) address the estimation of a bounded normal

mean, using squared-error loss. The former paper looks at Bayes estimators for 2-point and
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3-point priors, and shows that they are minimax when the bound on the mean is small; the

latter shows that a uniform prior performs surprisingly well in a minimax sense.

Let �0m put mass 1=2 on �m. Because the loss is squared-error, the Bayes estimator �0m

against that prior is the posterior mean of � given x, which we can calculate. The marginal

density of X is

fX(x) =
1

2
p
2�

h
e�(x�m)2=2 + e�(x+m)2=2

i
: (18)

Proceeding blithely without concern for rigor, the posterior \density" of � given X = x is

f�jX=x(�) =
���me

�(x�m)2=2 + ��+me
�(x�m)2=2

e�(x�m)2=2 + e�(x+m)2=2
; (19)

where �x is the Dirac delta measure (a point-mass at x = 0). The posterior mean is

�0m(x) = E(�jX = x)

=

"
me�(x�m)2=2 �me�(x�m)2=2

e�(x�m)2=2 + e�(x+m)2=2

#

= m
emx � e�mx

emx + e�mx

= m tanh(mx): (20)

Similarly, let ��m put mass � at zero, and mass (1 � �)=2 at �m. The Bayes estimator

for that prior is

��m(x) =
(1� �)m tanh(mx)

1� � + � exp(m2=2)sech(mx)
: (21)

Finally, let �m be the uniform prior on [�m;m]. Let's �nd the corresponding Bayes

estimator. The conditional distribution of X given � is as before, and the marginal density

of X is
1

2m

Z m

�=�m
�(x� �)d� =

1

2m
(�(x�m)� �(x+m)); (22)

where �(�) is the standard normal density and �(�) is the standard normal cdf. The posterior

density of � is

f(�jx) = 1j�j�m
�(x� �)

�(x�m)��(x+m)
: (23)

The Bayes estimator �m(x) is the posterior mean, namely

Rm
�m ��(� � x)d�

�(x�m)� �(x+m)
: (24)
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Let's work on the numerator:

Z m

�m
��(� � x)d� =

Z m

�m
(� � x)�(�� x)d� +

Z m

�m
x�(� � x)d�

= e�(x�m)2=2 � e�(x+m)2=2 + x(�(x�m)� �(x+m)): (25)

Thus 24 is

�m(x) = x+
e�(x�m)2=2 � e�(x+m)2=2

�(x�m)� �(x+m)
: (26)

One use the results following Stein's lemma to calculate the risks di�erently.

Lemma 4 (Casella and Strawderman, 1981, Lemma 3.1) The Bayes estimator �0m has max-

imum risk

max
�2[�m;m]

R(�; �0m) = max
�
R(0; �0m); R(m; �

0
m)
�
: (27)

Proof. Let �(x) = �0m(x).

�0(x) = (d=dx)�(x) = m(d=dx) tanh(mx)

= m2 �m2 tanh2(mx)

= m2 � �2(x); (28)

and

�00(x) = (d2=dx2)�(x) = �2�(x)�0(x): (29)

Note that in general, if �(x) is di�erentiable (any other conditions needed?) and � is a

location parameter,

lim
a!0

E�+a�(X)�E��(X)

a
= lim

a!0

E��(X + a)� E��(X)

a

= lim
a!0

E�(�(X + a)� �(X))

a

= E� lim
a!0

�(X + a)� �(X)

a

= E��
0(X): (30)

The risk of � at � is

E�j� � �(X)j2 = �2 � 2�E��(X) + E��
2(X): (31)
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The derivative of the risk w.r.t. � is (applying 30)

d=d�R(�; �0m) = 2� � 2E��(X)� 2�E��
0(X) + 2E��(X)�0(X)

= 2E� [(� � �(X))(1� �0(X))]

= 2E� [((� �X) + (X � �(X)))(1� �0(X))]

= E� [(X � �(X))� �0(X)(X + �(X))] : (32)

Casella and Strawderman use Karlin's change of sign lemma to show that this can have at

most three sign changes; recall that E� is a variation-diminishing transformation for N(�; 1),

so the result follows if the argument of the expectation has at most three sign changes. The

argument is

(x� �(x))� �0(x)(x+ �(x)); (33)

which vanishes at x = 0. Its other zeros solve

x� �(x) = �0(x)(x+ �(x)); (34)

or equivalently (for x 6= 0)

1� �(x)=x = �0(x)(1 + �(x)=x): (35)

For x > 0, �(x)=x and �0(x) are positive and decreasing. Thus for x > 0, (1 � �(x)=x) is

increasing, and �0(x)(1+�(x)=x) is decreasing, so 35 has at most one solution for x > 0. Note

that �0(x) is an even function, and �(x) and x are odd functions, so (x��(x))��0(x)(x+�(x))
is odd, and it has at most one zero for x < 0, and thus at most three zeros counting the one

at x = 0. Both �(x) and �0(x) are bounded, so the argument is negative for x ! �1 and

positive for x! +1; hence, the sign sequence of the argument is �+�+. By the change of
sign lemma, the expectation also has at most three sign changes, in the same order. Again

because the argument is odd,

E0 [(X � �(X))� �0(X)(X + �(X))] = 0: (36)

Thus the risk is stationary at � = 0. The derivative of the risk at � > 0 is the negative of

the derivative of the risk at �� (as you can see from symmetry). Thus a local extremum of
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the risk for some � > 0 must be a minimum, and hence the maximum risk is either at � = 0

or at � = �m. This proves the lemma.

If we can establish that the Bayes risk of the estimator is equal to its maximum risk, the

estimator is minimax.

Lemma 5 Casella and Strawderman, 1981, Lemma 3.2. The function

f(m) = R(0; �0m)�R(m; �0m) (37)

has only one sign change as m goes from 0 to 1. The sign change is from negative to

positive, so there is a unique m0 2 R s.t. f(m) � 0, 8m � m0.

Proof. The di�erence in risks is

f(m) = E0(�(X)� 0)2 � Em(�(X)�m)2

= E0(m tanh(mX))2 � Em(m tanh(mx)�m)2

= m2
h
E0 tanh

2(mX)� Em(1 � tanh(mx))2
i

� m2g(m): (38)

Di�erentiating g(m) gives

d

dm
g(m) = 2E0(X tanh(mX)sech2(mX))+2Em((X+m)(1� tanh(mX))sech2(mX)): (39)

The second expectation is of an argument with but one sign change, from negative to positive,

so if its expectation is positive at � = 0, it is positive for � = m � 0 (the distribution of the

argument will be stochastically larger). De�ne Q = X tanh(mX)sech2(mX). We have

d

dm
g(m) � 2E0(X tanh(mX)sech2(mX)) + 2E0((X +m)(1� tanh(mX))sech2(mX))

= 2E0Q+ 2E0

�
(X +m)sech2(mX)�Q

�
= 2E0

�
(X +m)sech2(mX)

�
= 2mE0sech

2(mX) + 2E0Xsech2(mX)

= 2mE0sech
2(mX)

� 0 for m � 0: (40)
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(The penultimate step uses the fact that Xsech2(mX) is an odd function.) This proves the

lemma, and takes us to one of the main theorems of Casella and Strawderman:

Theorem 2 Casella and Strawderman, 1981, Theorem 3.1. If X � N(�; 1), � 2 � =

[�m;m], 0 � m � m0, then �0m(x) = m tanh(mx) is minimax for squared-error loss, and � 0m

is a least-favorable prior.

Proof. The two lemmas show that for m � m0, max�2�R(�; �0m) = R(m; �0m). But for the

prior �0m that assigns mass 1=2 to �m, the Bayes risk is

r(�0m; �
0
m) =

1

2
R(�m; �0m) +

1

2
R(m; �0m) = R(m; �0m): (41)

We have already seen that if the Bayes risk of the Bayes estimator for a given prior equals

the maximum risk of the Bayes estimator over the parameter set, the Bayes estimator is

minimax. We are done.

Casella and Strawderman go on to show that �0m is not least favorable for m > m0 � 1:05.

Asm ", the least favorable prior concentrates at a larger and larger number of discrete points

in [�m;m]. The three-point priors ��m are minimax for some range of values of m, including

at least about m 2 [1:4; 1:6].
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