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Frifth Set of Notes

1 More on the Bounded Normal Mean

Lemma 1 Stein’s Lemma. (See Evans and Stark, 1996. Ann. Stat., 24, 809-815, for
a substantial generalization.) Suppose X ~ N(0,1), and that §(-) is differentiable, with
Eg|8'(X)] < o0, limy_po 6(z) exp{—(z — 0)2/2} = 0, and that Eg[s(X)(X — 0)] is finite.
Then

Eg[8(X)(X — 0)] = Egd'(X). (1)

Proof. Let ¢(x) be the standard normal density. Integrate by parts:

Eil8(X)(X — 0)] = AZ&@@—@Mx—@M
_ 125@xx—@¢wmx
= (@)@ + [ #a)ole)da
= [ #@iaa

= E,8(X). (2)
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Lemma 2 Consider estimating the mean 6 of a normal distribution with unit variance using

an estimator & that satisfies the conditions of Stein’s Lemma. For squared-error loss,
R(0,8) = 1 — Ey(20'(X) — (X)), (3)
where h(z) = x — 6(x).
Proof.
R(6,8) = Eg0—5(X))?
= Fp(f— X +X —6(X))°
(—(X - 0) + (X))’
= By (X = 0)? = 2(X = 0)p(X) + (X)?)
= 1-E (w (X) — (X)), (4)

using the lemma in the last step.

Bickel (1981, Ann. Stat., 9, 1301-1309) studies the minimax problem as the bound goes
to infinity and finds the asymptotic form of the least-favorable prior. We have a single
observation X ~ N(6,1), with # € © = [—m, m]. The loss function ((8,a) = |# — a|?>. The
action space is A = R (which we might as well limit to [—m, m] if we can). The “natural”

estimator is 6°(z) = x, and the maximum likelihood estimator is the truncation estimator:

m, T >m

Svrs(z) =14 &, 2| < m, (5)
—m,z < —m
Clearly, the risk of 8° is unity for all 8, the maximum risk of the MLE is for # = 0, and the

minimum risk is for § = +m.

Lemma 3 (Bickel, 1981; special case of Brown, 1971) Suppose X ~ N(0,1), 0 € 0,0 ~ x.
Let f, be the density of the marginal distribution of X :

o0

Jolw) = dxmla) = [ olw — 0)n(d0). (6)
The Bayes risk for © for squared-error loss is

rir)=1-— /:: (];é((z)))?dx (7)




Proof. The Bayes estimator for prior 7 is the posterior mean of 6 given x. The derivative

of fr(x) with respect to x is

L) = [T s oy
= [ (e = 0)é(x ~ O)r(at)
= —ef(e)+ [ 06(e —0)m(dt)
= (ot B(])) f(2), (5)
so the posterior mean of # given z is
() = dnle) = 2 + [12)/ fo(e), )

Applying the previous lemma, with ¢ (x) = @ — 6(x) = —fL(x)/f-(x) gives the risk at 6 of

this estimator for squared-error loss to be

L= Eq (20/(X) = (X)) = 1= B (<2700 fo(X) + 2(f1(X))*/ F2(X) = (X)) 2(X))

= 1= By (£ FAX) = 2f1(X)/ f(X)).

Taking the expectation with respect to 7 to find the Bayes risk, and using Fubini’s Theorem
yields

dﬂ:ﬂﬁ@@):l—/ / LG Qg(mwkw—@mmm

e —2f”( \fale)
! / f2(x)

(1)
L e 2 ()

Because f; is the result of convolution with a Gaussian density, its derivatives of all orders

frl(a)dx

vanish as ¥ — $00, so we have

rm):1—/j}%§%fmx (12)

Note that for a distribution F' with absolutely continuous density f, the Fisher information

Fp:lzﬁég?im, (13)

(x

is

(10)



so the equality just established is r»(x) = 1 — I(® % ), where @ is the standard normal
distribution. Thus we have a relation between the Bayes risk for a given prior on # and the
Fisher information of the marginal distribution of the observation X for that prior. The
least favorable prior is that for which the Fisher information of ® x 7 is minimal.

Let p(m) be the minimax risk for squared-error loss with @ = [—m,m], and let r(x)
be the Bayes risk for squared-error loss using prior = on 6. Bickel (1981) uses the relation
between the Bayes risk and the Fisher information, and properties of the Fisher information,
to show that if 7y is the distribution on [—1,1] with density

ai(s) = cos*(sm/2), |s| <1 (14)

0, otherwise,

and 7, is the distribution on [—m,m| with density

gn(s) =m™ gi(s/m), (15)
then the priors {7,,} are approximately least favorable.

Theorem 1 (Bickel, 1981, Theorem 2.1). As m — oo,

p(m) = r(x,) +o(m™?), (16)
and
7 _2
r(mm) =1— - + o(m™7). (17)
Let 72 be the least favorable prior when © = [—m,m], and let ﬂm) be the distribution

obtained by scaling ©° to [—1,1]: ﬂm)(s) = 72 (ms). Then ﬂm) converges weakly to 7.

Perhaps surprisingly, the Bayes estimators 6., () are not asymptotically minimax (in-
deed, limsup,, R(m, é,,,) > 1, so it does not dominate the naive estimator é(x) = ). Bickel
(1981) also shows how to modify the estimator to be asymptotically minimax to order m™2.

Casella and Strawderman (1981, Ann. Stat., 9, 870-878) and Gatsonis, MacGibbon and
Strawderman (1987, Stat. Prob. Lett., 6, 21-30) address the estimation of a bounded normal

mean, using squared-error loss. The former paper looks at Bayes estimators for 2-point and



3-point priors, and shows that they are minimax when the bound on the mean is small; the
latter shows that a uniform prior performs surprisingly well in a minimax sense.

Let #° put mass 1/2 on +m. Because the loss is squared-error, the Bayes estimator 62
against that prior is the posterior mean of # given z, which we can calculate. The marginal

density of X is
1

NG

Proceeding blithely without concern for rigor, the posterior “density” of # given X = x is

fx(x)

e (=2 mlobm®/2] (18)

e 2 o2

foix=x(0) = , (19)

e—(@-mP/2 1 e—(em)/2

where 6, is the Dirac delta measure (a point-mass at @ = 0). The posterior mean is

82 (x) = E0|X =2z)

me—(l’—m)2/2 o me—(l’—m)2/2

e—(e-mP2 | e—(atm)?/2

et — e~
mi

= mtanh(ma). (20)

mx

Similarly, let 7 put mass « at zero, and mass (1 — «)/2 at +m. The Bayes estimator

for that prior is
1 — tanh
62 (1) = ( a)m tanh(maz) ‘ 1)
1 — a + aexp(m?/2)sech(ma)

Finally, let 7, be the uniform prior on [—m,m]|. Let’s find the corresponding Bayes

estimator. The conditional distribution of X given 6 is as before, and the marginal density

of X is
1 m 1
2m /e:_m oz = 0)db = o—(2(z —m) — (x + m)), (22)
where ¢(-) is the standard normal density and ®(-) is the standard normal cdf. The posterior

density of 8 is
¢z —0)

Olz)y =1 . 2
1(0]) 1fl<m Oz —m) — ®(x +m) (23)
The Bayes estimator é,,(x) is the posterior mean, namely
" 0p(0 — x)db

Oz —m)— Oz +m)
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Let’s work on the numerator:

/_”; 06(0 — 2)d0 = /_”;(9 —2)é(0 — 2)df + /_”; v (0 — 2)df
= T2 2 (@2 —m) — B(w 4+ m)).  (25)

Thus 24 is
e~ (e=m)?/2 _ —(zt+m)?/2

bm() =2+ Oz —m)— Pz +m)

(26)

One use the results following Stein’s lemma to calculate the risks differently.

Lemma 4 (Casella and Strawderman, 1981, Lemma 3.1) The Bayes estimator &2, has maa-
imum risk

max_R(0,65,) = max (R(0,8%,), R(m,55)) . (27)

ge[—m,m]

Proof. Let §(z) = 62 (2).

8'(x) = (d/dz)6(x) = m(d/dz)tanh(ma)
= m? — m*tanh®*(mz)

= m?— §*(x), (28)

and

§"(x) = (d2/dz?)(z) = —28(x)8'(2). (29)

Note that in general, if 6(x) is differentiable (any other conditions needed?) and 6 is a

location parameter,

E9+a5(X) — E@&(X) m E@&(X + Cl) — E@&(X)

lim = 1

a—0 a a—0 a
o Bl8(X + @) = 5(X))
a—0 a
i S @) 3(X)
a—0 a
= Eg8'(X). (30)

The risk of 6 at 0 is

Bl — 6(X)2 = 02 — 20E,8(X) + Ep6%(X). (31)



The derivative of the risk w.r.t. 6 is (applying 30)

d/dOR(0,8°) = 20— 2E,6(X) — 20E,8'(X) + 2E,8(X)8'(X)
= 2B [(0 = 6(X))(1 - &'(X))]
= 2B [((0 — X) + (X = 6(X)))(1 = 8'(X))]
= B [(X = 6(X)) = &'(X)(X + 6(X))]. (32)

Casella and Strawderman use Karlin’s change of sign lemma to show that this can have at
most three sign changes; recall that Fy is a variation-diminishing transformation for N (6, 1),
so the result follows if the argument of the expectation has at most three sign changes. The

argument is
(z = 6(2)) — &'(z)(x + é(=)), (33)

which vanishes at « = 0. Its other zeros solve
v —8(x) = 8'(«) (e + (), (34)

or equivalently (for « % 0)
1= 6(z)/x = 8'(z)(1 + §(x) /). (35)

For @ > 0, 6(«)/x and é'(x) are positive and decreasing. Thus for @ > 0, (1 — é(x)/x) is
increasing, and ¢'(x)(1+6(x)/x) is decreasing, so 35 has at most one solution for > 0. Note
that 6’(x) is an even function, and 6(z) and @ are odd functions, so (x —é(x))—6'(x)(x+6(x))
is odd, and it has at most one zero for < 0, and thus at most three zeros counting the one
at © = 0. Both é6(x) and é'(x) are bounded, so the argument is negative for + — —oo and
positive for # — 400; hence, the sign sequence of the argument is — + —+. By the change of
sign lemma, the expectation also has at most three sign changes, in the same order. Again

because the argument is odd,
Eo[(X —6(X)) = &"(X)(X +6(X))] =0. (36)

Thus the risk is stationary at § = 0. The derivative of the risk at § > 0 is the negative of

the derivative of the risk at —f (as you can see from symmetry). Thus a local extremum of
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the risk for some § > 0 must be a minimum, and hence the maximum risk is either at § = 0
or at § = £m. This proves the lemma.
If we can establish that the Bayes risk of the estimator is equal to its maximum risk, the

estimator is minimax.
Lemma 5 Casella and Strawderman, 1981, Lemma 3.2. The function

has only one sign change as m goes from 0 to co. The sign change is from negative to

positive, so there is a unique mo € R s.t. f(m) <0, Ym < my.
Proof. The difference in risks is

fm) = Eo(6(X)—=0)* = En(8(X) —m)?
= FEy(mtanh(mX))? — E,,(mtanh(mz) — m)?
= m? [EO tanh*(mX) — E,,(1 — tanh(mx))z]

2g(m). (38)

Il
3

Differentiating g(m) gives

%g(m) = 2Fo( X tanh(m X)sech®(m X)) +2E,,((X +m)(1 —tanh(mX))sech®*(mX)). (39)

The second expectation is of an argument with but one sign change, from negative to positive,
so if its expectation is positive at § = 0, it is positive for § = m > 0 (the distribution of the

argument will be stochastically larger). Define Q@ = X tanh(m X )sech’(mX). We have

%g(m) > 2Eo(X tanh(mX)sech®(mX)) + 2Eo((X 4+ m)(1 — tanh(mX))sech*(m X))

= 26oQ + 2Ey ((X + m)sech®(mX) — Q)
= 28 ((X + m)sech’(mX))

= 2mEpsech’(mX) + 2Ey Xsech?(mX)

= 2mEysech?(mX)

> 0 for m > 0. (40)



(The penultimate step uses the fact that Xsech®(mX) is an odd function.) This proves the

lemma, and takes us to one of the main theorems of Casella and Strawderman:

Theorem 2 Casella and Strawderman, 1981, Theorem 3.1. If X ~ N(0,1), § € © =
[—m,m], 0 < m < myg, then &% (x) = mtanh(maz) is minimax for squared-error loss, and T2,

is a least-favorable prior.

Proof. The two lemmas show that for m < mg, maxsee R(6,6°,) = R(m,62). But for the

prior 72 that assigns mass 1/2 to +m, the Bayes risk is

m?)rm

1 1
r(ﬂ—o 50 ) = §R(_m7 52) + §R(m7 52) = R(mv 52) (41)

We have already seen that if the Bayes risk of the Bayes estimator for a given prior equals
the maximum risk of the Bayes estimator over the parameter set, the Bayes estimator is
minimax. We are done.

Casella and Strawderman go on to show that 72 is not least favorable for m > mg =~ 1.05.
Asm T, the least favorable prior concentrates at a larger and larger number of discrete points
in [—m, m]. The three-point priors 72 are minimax for some range of values of m, including

at least about m € [1.4,1.6].



