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1 Some remarks on Bayes and Minimax estimators

We observe X � P�, � 2 �. Let � be the prior distribution of �; we assume that the

support of � is a subset of �. Suppose the conditional distribution of X given � is P�, with

corresponding expectation operator E�. The action space is A, and we seek a decision rule

� : X ! A. The risk of a decision � is R(�; �) = E�`(�; �(X)). De�ne the average risk of an

estimator � to be

r�(�) � EX;�`(�; �(X))

= E[E(`(�; �(X)))jX)]; (1)

where the expectation is with respect to the product measure of X and �. The Bayes

estimator minimizes the average risk.

The posterior risk of an action a is r�(a; x) = E�(`(�; a)jX = x), where the subscript � is

to remind us of the prior, but the expectation is with respect to the conditional distribution

of � given X, which is derived from the product measure on X and �. Ideally, we would like
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to �nd the decision rule �� : R! A that minimizes r(�jx) for each x; such a rule would also

minimize the Bayes risk. In general, such a rule need not exist; if one exists, it need not be

unique (vide infra).

An estimator � is unbiased for � (�) if E��(X) = �. Recall that an estimator � is inad-

missible if there exists another estimator that does at least as well for all values of �, and

better for some value of �. That is, if there is a �0 and �0 such that

R(�; �0) = E�(`(�; �(X)) � R(�; �) 8� 2 �; (2)

and

R(�0; �0) <� R(�0; �): (3)

One of the nice properties of Bayes estimators is that if they are unique, they are admis-

sible.

Lehmann, TPE, x4.1 Theorem 1.1 states (in slightly di�erent notation)

Theorem 1 Let � have distribution �, and, given � = 
, let X have distribution P
. Sup-

pose `(�; a) is nonnegative for all �, and that there exists an estimator �0 with �nite risk

for estimating estimating � (�). If for almost all x there exists a rule ��(x) minimizing

E�f`(�; �(x))jX = xg, then �� is a Bayes estimator.

Corollary 1 If `(�; a) = ja� � (�)j2, then �� = E�f� (�)jX = xg.

Corollary 2 If `(�; a) is strictly convex in a, a Bayes estimator �� is unique a.e. P = fP�g,
provided the average risk of �� is �nite, and provided the marginal distribution Q of X

Q(A) =
Z
P�fX 2 Agd�(�) (4)

is such that a.e. Q implies a.e. P.

The condition on Q ensures that measures P� that are the only ones to assign mass to

some points x 2 X are not themselves given zero measure by �.

Note that we typically give up unbiasedness in moving to Bayes decisions:
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Theorem 2 (Lehmann, TPE, 4.4 Theorem 1.2) Let � � � and let P� be the conditional dis-

tribution of X given �. Consider estimating � (�) for squared-error loss. If �(X) is unbiased,

it cannot be Bayes unless

EX;�[�(X)� � (�)]2 = 0: (5)

Proof. Suppose � is unbiased and is Bayes for � (�). Then �(X) = E�[� (�)jX] a.e. Unbi-

asedness implies E[�(X)j� = 
] = � (
) for all 
 2 �. Conditioning on X gives

E[� (�)�(X)] = Ef�(X)E[� (�)jX]g
= E�2(X): (6)

Conditioning on � gives

E[� (�)�(X)] = Ef� (�)E[�(X)j�]g
= Eg2(�): (7)

Thus

E[�(X)� � (�)] = E�2(X) + Eg2(�)� 2E[� (�)�(X)] = 0: (8)

2.

The Bayes estimator minimizes a weighted average of the risks for di�erent possible

values of the parameter � 2 �, where the weight is the prior distribution on those values. In

contrast, the minimax decision rule minimizes the largest risk for any � 2 �:

sup
�2�

R(�; �): (9)

There is a truly wonderful duality between the risks. A prior � for � is least favorable if the

Bayes risk is no larger for any other prior than for it; i.e., if �� denotes the Bayes estimator

for prior � on �, then �� is least favorable if

r��(���) � r�(��) (10)

for all priors � on �.
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Theorem 3 (Lehmann, TPE, 4.2 Theorem 2.1) Suppose that � is a prior distribution on

� such that

E�R(�; ��) = sup
�2�

R(�; ��); (11)

where �� is the Bayes decision for prior �, as before. Then

1. �� is minimax over �.

2. If �� is the unique Bayes decision for prior �, it is the unique minimax decision.

3. � is least favorable.

Proof.

1. Let � be a di�erent decision rule. Then

sup
�2�

R(�; �) � E�R(�; �)

� E�R(�; ��)

= sup
�2�

R(�; ��): (12)

2. same proof as (1), using >.

3. Let �1 be another prior distribution on �. Then

r�1(��1) = E�1R(�; ��1)

� E�1R(�; ��)

� sup
�2�

R(�; ��)

= r�: (13)

For the Bayes risk of the Bayes estimator to equal the maximum risk of the Bayes

estimator implies that

P�fR(�; ��) = sup
�2�

R(�; ��)g = 1: (14)

This, together with the theorem, implies that if a Bayes estimator has constant risk (over

�), it is minimax. Moreover, if there is a set ! � � with �(!) = 1 such that R(�; ��) attains

its maximum at all � 2 !, then �� is minimax.
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The preceeding development has tacitly assumed that we are restricting attention to

non-randomized estimators. When the loss function is strictly convex, the every randomized

estimator is dominated by a non-randomized estimator. When the loss function is merely

convex, for each randomized estimator, there is a non-randomized estimator whose risk is no

larger than that of the randomized estimator. Thus in many situations (squared-error loss,

in particular) it su�ces to consider non-randomized estimators.

The following material is drawn primarily from TPE.

Lemma 1 Jensen's inequality. Let f : X ! R be a convex function, and let X be a random

variable taking values in X . Then

f(EX) � Ef(X): (15)

If f is strictly convex, the inequality is strict unless X is almost surely constant.

De�nition 1 A randomized decision rule � is a mapping from the sample space X to a

random variable Y (x) that takes values in the action space A (which is assumed to be a

measurable space). To each x 2 X , � assigns a random variable Y (x) with known distribution

Px. The decision rule assigns to an observed value x an observation from the random variable

Y (x) � Px. The risk of a randomized decision rule is E�EX`(�; Y (X)).

Theorem 4 (Lehmann, TPE, x1.5, Theorem 5.1) Suppose X � P�, � 2 �, and let T

be su�cient for P�. For any estimator �(X) of � (�) there exists a (possibly randomized)

estimator based on T that has the same risk function as �(X).

Sketch of proof. Given T , the conditional distribution of X does not depend on �.

Let P(�jT = t) denote this distribution. Given T = t, one can construct a random variable

X 0
t that has distribution P( � jT = t) The unconditional distributions of X 0

t and X are the

same: P�fX 0
t 2 Ag = P�fX 2 Ag for all measurable subsets A � X . Thus if one knows

the value of T , performing a subsequent randomization by drawing from P( � jT = t), allows

one to generate data with the same distribution as the original experiment gave. One can

therefore construct an estimator �0(t) that depends on the data only through T and that
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is risk-equivalent to �(x) by taking �(t) to be �(X 0
t), whose value depends on the data only

through T .

Remark. Any randomized estimator from data X is equivalent to a non-randomized esti-

mator from data X 0 = (X;U), where U � U [0; 1] is independent of X.

Theorem 5 The Rao-Blackwell Theorem (see Lehmann, TPE, x1.6, Theorem 6.4). Let X

have distribution P� 2 P� = fP� : � 2 �g, and let T be su�cient for P�. Let � : X ! A
be an estimator of � (�), and let the loss `(�; a) be strictly convex in a. Suppose E��(X) <1
and E�`(� (�); �(X)) <1, � 2 �. Let the estimator �(t) � E[�(X)jT = t]. Then

R(�; �) < R(�; �) (16)

unless �(X) = �(T ) with probability 1.

Proof. If ` is strictly convex in a, then applying Jensen's inequality to the conditional

expectation given T = t,

`(�; �(t)) < Ef`(�; �(X))jT = tg; (17)

unless �(X) = �(t) a.s. Thus

E�`(�; �(t)) < E�Ef`(�; �(X))jT = tg; (18)

which was to be shown.

Corollary 3 (Lehmann, TPE, $1.6, Corollary 6.2) If the loss function ` is strictly convex,

every randomized estimator of � (�) is dominated by a non-randomized estimator. If ` is

convex, there is a non-randomized estimator whose risk function is pointwise no larger than

that of any randomized estimator.

Proof. Any randomized estimator is equivalent to a nonrandomized estimator based on

(X;U), and X is su�cient for X.

Note that the \zero-one" loss associated with con�dence intervals is not convex. If the

loss is

`(�; a) =

8><
>:

0; j� � aj � �

1; j� � aj > �;
(19)
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then the risk of � is the non-coverage probability of the �xed-length interval [� � �; � + �],

which one would like to minimize for a given �. This loss is not convex: take a0 = � and

a1 = � + 3�. Then `(�; a0) = 0, `(�; a1) = 1, and

`(�; (a0 + a1)=2) = 1 > (`(�; a0) + `(�; a1))=2 = 1=2: (20)

(This loss is, however, quasiconvex. A quasi-convex function f is one for which

f(�x + (1� �)y) � maxff(x); f(y)g; (21)

for all x, y, and for all � 2 [0; 1]. If the inequality is strict whenever � 2 (0; 1) and x 6= y, f

is strictly quasiconvex. For any two actions a0 and a1, we have

`(�; �a0 + (1� �)a1) � max(`(�; a0); `(�; a1)); 8� 2 [0; 1]; (22)

so ` is quasiconvex (but not strictly) in a. A di�erent characterization of quasiconvex func-

tions is that f is quasiconvex i� its level sets fx : f(x) � bg are convex for every b. A local

minimum of a strictly quasiconvex function is a global minimum.)

Lehmann (TPE, 4.2 Example 2.2) gives an example for this zero-one loss where a ran-

domized decision does better than a non-randomized one. Suppose we are estimating the

probability p of success in n i.i.d. Bernoulli(p) trials from the total number X of successes

in the trials, which is a binomially-distributed su�cient statistic. Suppose the interval half-

width is � < 1=(2(n + 1)). There are only n + 1 possible data, so a non-randomized rule

can take only n + 1 possible values. Because the interval is so short, the union of the in-

tervals centered at those values cannot include all of � = [0; 1], and thus the maximum

risk for the minimax non-randomized rule is 1. (Hence, just picking �(X) = 0 is minimax

among non-randomized decisions.) On the other hand, suppose we use the randomized rule

�r(X) � U(0; 1), independent of the data and ignoring the data completely. Then

sup
�2[0;1]

PfjU � �j > �g = 1� � < 1: (23)

In this case, a randomized rule does uniformly better (as measured by maximum risk over

�) than the best non-randomized rule.
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2 Some Math

Before we begin, some math.

De�nition 2 A set X is partially ordered by a relation � if for x; y; z 2 X ,

1. x � y and y � z ) x � z (transitivity)

2. x � x for all x 2 X (re
exivity)

3. x � y and y � x ) x = y.

A subset X0 of X is totally ordered by � if for every x; y 2 X , either x � y or y � x. If X0

is totally ordered, x; y 2 X0, x � y, and x 6= y, we write x < y.

That every nonempty partially ordered set contains a maximal totally ordered subset is

Hausdor�'s maximality theorem.

De�nition 3 Suppose the sets X and Y are totally ordered. Let K(x; y) : X � Y ! R.

We say K(x; y) is sign regular of order r (SRr) if for every 1 � m � r there is a constant

�m = �1 such that for every pair of increasing sets of elements (x1 < x2 < : : : < xm) and

(y1 < y2 < : : : < ym),

�mK

0
B@ x1; x2; : : : ; xm

y1; y2; : : : ; ym

1
CA �

��������������

K(x1; y1) K(x1; y2) � � � K(x1; ym)

K(x2; y1) K(x2; y2) � � � K(x2; ym)

� � � � � � � � � � � �
K(xm; y1)K(xm; y2) � � �K(xm; ym)

��������������

� 0;

(24)

where the vertical bars denote the determinant of the matrix. If the inequality 24 is strict,

K is said to be strictly sign regular of order r (SSRr). If all �j equal +1, 1 � j � r, K is

said to be totally positive of order r (TPr). If all �j equal +1, 1 � j � r, and the inequality

24 is strict, we say K is strictly totally positive of order r (STPr). If the inequality 24 holds

for all �nite r, r is omitted from the notation, and K is said to be sign regular (SR), strictly

sign regular (SSR), totally positive (TP), or strictly totally positive (STP), respectively.
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For statistical applications, a very useful fact is that the \kernel" K(x; y) associated with

the \density" of a one-parameter exponential family is totally positive. That is, if X and Y
are totally ordered subsets of R, the kernelK(x; y) = �(x)exy is totally positive. This follows

from the fact that an exponential polynomial
Pn

j=1 pj(y)e
cjy, where cj 6= cj for i 6= j, and pj

is a real polynomial of degree dj , either vanishes identically, or has at most n� 1 +
Pn

j=1 dj

zeros (counting multiplicities).

De�nition 4 The lower number of sign changes of a �nite real-valued sequence (xj)mj=1,

S�((xj)), is the number of sign changes in the sequence, discarding zeros. The upper number

of sign changes of (xj), S+((xj)), is the maximum number of sign changes in the sequence

when the terms that equal zero are counted as having arbitrary signs. Let f be a real-valued

function de�ned on a totally ordered subset I of R. The lower number of sign changes of f ,

S�(f) is

S�(f) = sup
m<1; fxjg�I:x1<x2<:::xm

S�((f(xj))
m
j=1); (25)

and the upper number of sign changes of f , S+(f), is

S+(f) = sup
m<1; fxjg�I:x1<x2<:::xm

S+((f(xj))
m
j=1): (26)

A very important result (which we shall use presently) is that transformations induced

by a sign-regular kernel are variation diminishing: they do not increase the number of zero-

crossings of a function.

Theorem 6 (Karlin, x3, Theorem 3.1) Let K(x; y) : X � Y ! R be Borel measurable,

where X and Y are totally ordered topological spaces. Let � be a sigma-�nite regular measure

on Y, such that �(U) > 0 for each open set U for which U \ Y 6= ;. Let X be a totally

ordered topological space, and let K(x; y) : X � Y ! R be Borel-measureable, and assume

that
R
Y K(x; y)d�(y) exists for every x 2 X . Let f : Y ! R be a bounded, Borel-measurable

function on Y. De�ne the transformation (Tf) : X ! R by

(Tf)(x) =
Z
Y
K(x; y)f(y)d�(y): (27)
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1. If K(x; y) is SRr, then if S�(f) � r � 1,

S�(Tf) � S�(f); (28)

If K is TPr and f is piecewise continuous, then if S�(f) = S�(Tf) � r � 1, f and

Tf have the same sequence of signs as their arguments increase.

2. If K is SSRr and f 6= 0 a.e.(�),

S+(Tf) � S�(f) (29)

if S�(f) � r � 1.

A transformation that does not increase the number of zero crossings of a function is

called variation diminishing. Because the kernel associated with a one-parameter exponential

family is TP , the theorem implies that integration against the density of an exponential

family is variation diminishing.

For example, we obtain the Normal distribution with unit variance by taking �(x) =

e�x
2=2=

p
2� and d�(y) = e�y

2=2dy. Suppose f is bounded and Borel-measurable. Let

(Tf)(x) =
Z
R

f(y)e�x
2=2=

p
2�exye�y

2=2dy

=
Z
R

f(y)e�(x�y)
2=2=

p
2�dy

=
Z
R

f(y)�(x� y)dy

= f ? �; (30)

where � is the density of the standard normal distribution and ? denotes convolution. Then

S�(f ? �) � S�(f).

In this case, K(x; y)d�(y) is a probability density for �xed x. Suppose Y is a random

variable with that density. Then a di�erent notation for the transformation T is (Tf)(x) =

Exf(Y ).

See Karlin, 1968, Total Positivity, Stanford Univ. Press, Stanford CA, for more on total

positivity.
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