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Fourth Set of Notes

1 Some remarks on Bayes and Minimax estimators

We observe X ~ Py, § € ©. Let 7 be the prior distribution of 8; we assume that the
support of 7 is a subset of ©. Suppose the conditional distribution of X given 4 is Py, with
corresponding expectation operator Ey. The action space is A, and we seek a decision rule
6: X — A. The risk of a decision ¢ is R(0,6) = Egl(6,6(X)). Define the average risk of an

estimator § to be

re(8) = Exl(0,6(X))
= BB, 6(X))]X)]; (1)

where the expectation is with respect to the product measure of X and #. The Bayes
estimator minimizes the average risk.

The posterior risk of an action a is rr(a,x) = F,({(0,a)|X = x), where the subscript 7 is
to remind us of the prior, but the expectation is with respect to the conditional distribution

of 8 given X, which is derived from the product measure on X and 6. Ideally, we would like
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to find the decision rule ¢, : R — A that minimizes r(é|x) for each x; such a rule would also
minimize the Bayes risk. In general, such a rule need not exist; if one exists, it need not be
unique (vide infra).

An estimator 6 is unbiased for 7(6) if Ez6(X) = 6. Recall that an estimator ¢ is inad-
missible if there exists another estimator that does at least as well for all values of 8, and

better for some value of #. That is, if there is a 6g and g such that
R(8,80) = Fol1(0,6(X)) < R(8,8) Y0 <O, 2)
and
R(09,60) << R(00,9). (3)

One of the nice properties of Bayes estimators is that if they are unique, they are admis-

sible.
Lehmann, TPE, §4.1 Theorem 1.1 states (in slightly different notation)

Theorem 1 Let 0 have distribution 7, and, given 0 = v, let X have distribution P.,. Sup-
pose ((0,a) is nonnegative for all 0, and that there exists an estimator 6y with finite risk

for estimating estimating 7(0). If for almost all x there exvists a rule 6.(x) minimizing

EA000,6(x))| X =}, then 6, is a Bayes estimator.
Corollary 1 If ((0,a) = |a — 7(9)|*, then 6, = E.{7(0)|X = z}.

Corollary 2 [f{(0,a) is strictly convex in a, a Bayes estimator 6, is unique a.e. P ={Py},
provided the average risk of 6, is finite, and provided the marginal distribution ) of X

Q(A) = [ Po{X € A}dn(0) (4)
is such that a.e. ) implies a.e. P.

The condition on () ensures that measures Py that are the only ones to assign mass to
some points ¢ € X are not themselves given zero measure by 7.

Note that we typically give up unbiasedness in moving to Bayes decisions:



Theorem 2 (Lehmann, TPE, 4.4 Theorem 1.2) Let 0 ~ x and let Py be the conditional dis-
tribution of X given 6. Consider estimating 7(8) for squared-error loss. If 6(X) is unbiased,

it cannot be Bayes unless

Ex[6(X) —7(0)) = 0. (5)

Proof. Suppose 6 is unbiased and is Bayes for 7(8). Then 6(X) = E.[7(0)|X] a.e. Unbi-

asedness implies E[6(X)]|0 = v] = 7(7) for all ¥ € O. Conditioning on X gives

E[r(0)6(X)] = E{s(X)E[7(0)|X]}
= E&*X). (6)

Conditioning on 6 gives

Elr(0)6(X)] = E{r(0)E[6(X)[0]}
= Eg*(9). (7)

Thus
E[5(X) = 7(0)] = E&*(X) + Eg*(0) — 2E[r(0)8(X)] = 0. (8)

The Bayes estimator minimizes a weighted average of the risks for different possible
values of the parameter § € O, where the weight is the prior distribution on those values. In
contrast, the minimax decision rule minimizes the largest risk for any 4 € O:

sup R(0,9). 9)
(=]
There is a truly wonderful duality between the risks. A prior 7 for 8 is least favorable if the
Bayes risk is no larger for any other prior than for it; i.e., if 6, denotes the Bayes estimator

for prior # on 0, then #* is least favorable if

Frs (070 ) > 17(01) (10)

for all priors 7 on O.



Theorem 3 (Lehmann, TPE, 4.2 Theorem 2.1) Suppose that x is a prior distribution on
O such that
E.R(8,6,) =sup R(,6), (11)
€0
where 6, is the Bayes decision for prior ., as before. Then
1. 6, 15 minimaz over O,

2. If O, 1is the unique Bayes decision for prior w, it is the unique minimaz decision.

3. w is least favorable.

Proof.

1. Let 6 be a different decision rule. Then

sup R(0,6) > FE.R(0,0)
€0
> FE.R(0,6r)
= sup R(9, ). (12)

6co

2. same proof as (1), using >.

3. Let w1 be another prior distribution on ©. Then

rm(ém) = E7T1R(0757T1)
< FE.R(0,56,)
< sup R(0,6,)
0c©
= 7r,. (13)

For the Bayes risk of the Bayes estimator to equal the maximum risk of the Bayes
estimator implies that

P.{R(0,6,) =sup R(v,6,)} = 1. (14)

vE®

This, together with the theorem, implies that if a Bayes estimator has constant risk (over
0), it is minimax. Moreover, if there is a set w C @ with 7(w) = 1 such that R(0,¢,) attains

its maximum at all § € w, then 6, is minimax.
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The preceeding development has tacitly assumed that we are restricting attention to
non-randomized estimators. When the loss function is strictly convex, the every randomized
estimator is dominated by a non-randomized estimator. When the loss function is merely
convex, for each randomized estimator, there is a non-randomized estimator whose risk is no
larger than that of the randomized estimator. Thus in many situations (squared-error loss,
in particular) it suffices to consider non-randomized estimators.

The following material is drawn primarily from TPE.

Lemma 1 Jensen’s inequality. Let f : X — R be a convex function, and let X be a random

variable taking values in X. Then
[(EX) < BF(X). (15)
If f is strictly convex, the inequality is strict unless X is almost surely constant.

Definition 1 A randomized decision rule ¢ is a mapping from the sample space X lo a
random variable Y (x) that takes values in the action space A (which is assumed to be a
measurable space). To each x € X, ¢ assigns a random variable Y (x) with known distribution
P.. The decision rule assigns to an observed value x an observation from the random variable

Y(x) ~P,. The risk of a randomized decision rule is FgEx((0,Y(X)).

Theorem 4 (Lehmann, TPE, §1.5, Theorem 5.1) Suppose X ~ Py, 0 € O, and let T
be sufficient for Po. For any estimator 6(X) of 7(0) there exists a (possibly randomized)

estimator based on T that has the same risk function as 6(X).

Sketch of proof. Given T, the conditional distribution of X does not depend on 4.
Let P(:|T = t) denote this distribution. Given T = ¢, one can construct a random variable
X{ that has distribution P - [T = ¢) The unconditional distributions of X| and X are the
same: Pg{X] € A} = P¢{X € A} for all measurable subsets A C X'. Thus if one knows
the value of T', performing a subsequent randomization by drawing from P-|T = 1), allows
one to generate data with the same distribution as the original experiment gave. One can

therefore construct an estimator 6’(¢) that depends on the data only through 7" and that



is risk-equivalent to 6(x) by taking 6(¢) to be 6(X7), whose value depends on the data only
through T
Remark. Any randomized estimator from data X is equivalent to a non-randomized esti-

mator from data X' = (X,U), where U ~ U[0, 1] is independent of X.

Theorem 5 The Rao-Blackwell Theorem (see Lehmann, TPE, §1.6, Theorem 6.4). Let X
have distribution Py € Po = {P, : v € O}, and let T' be sufficient for Po. Let 6 : X — A
be an estimator of T(0), and let the loss ((8,a) be strictly convex in a. Suppose Egd(X) < oo
and Fgl(7(0),6(X)) < oo, § € O. Let the estimator n(t) = E[6(X)|T =t]. Then

R(O.) < R(0,9) (16)
unless 6(X) = n(T) with probability 1.

Proof. If 7 is strictly convex in a, then applying Jensen’s inequality to the conditional
expectation given T' = ¢,

(0,9(1)) < EXU0,6(X))|T = 1}, (17)

unless 6(X) = n(¢) a.s. Thus
Eol(0,(1)) < Ba {0, 6(X)IT = 11, (15)
which was to be shown.

Corollary 3 (Lehmann, TPE, $1.6, Corollary 6.2) If the loss function ( is strictly convez,
every randomized estimator of 7(0) is dominated by a non-randomized estimator. If { is
convex, there is a non-randomized estimator whose risk function is pointwise no larger than

that of any randomized estimator.

Proof. Any randomized estimator is equivalent to a nonrandomized estimator based on
(X,U), and X is sufficient for X.
Note that the “zero-one” loss associated with confidence intervals is not convex. If the

loss is

' 0, [0 —a] <x
(0,a) = (19)
17 |(9—Cl| > X



then the risk of ¢ is the non-coverage probability of the fixed-length interval [6 — x,é + v],
which one would like to minimize for a given y. This loss is not convex: take ay = 6 and

a; =6+ 3x. Then ((0,a0) =0, ((0,a1) =1, and
00, (ag+a1)/2) =1> (l(0,a0) + (0,a1))/2 = 1/2. (20)
(This loss is, however, quasiconvexr. A quasi-convex function f is one for which

fOe + (1= ANy) < max{f(z), [(y)}, (21)

for all z, y, and for all A € [0, 1]. If the inequality is strict whenever A € (0,1) and = # y, f

is strictly quasiconvex. For any two actions ag and aq, we have
00, ao + (1 — Nay) < max(€(0, ao), ((0,a1)), YA€ [0,1], (22)

so ( is quasiconvex (but not strictly) in a. A different characterization of quasiconvex func-
tions is that f is quasiconvex iff its level sets {z : f(x) < b} are convex for every b. A local
minimum of a strictly quasiconvex function is a global minimum.)

Lehmann (TPE, 4.2 Example 2.2) gives an example for this zero-one loss where a ran-
domized decision does better than a non-randomized one. Suppose we are estimating the
probability p of success in n i.i.d. Bernoulli(p) trials from the total number X of successes
in the trials, which is a binomially-distributed sufficient statistic. Suppose the interval half-
width is x < 1/(2(n + 1)). There are only n 4 1 possible data, so a non-randomized rule
can take only n 4+ 1 possible values. Because the interval is so short, the union of the in-
tervals centered at those values cannot include all of @ = [0,1], and thus the maximum
risk for the minimax non-randomized rule is 1. (Hence, just picking 6(X) = 0 is minimax
among non-randomized decisions.) On the other hand, suppose we use the randomized rule
6,(X) ~ U(0,1), independent of the data and ignoring the data completely. Then

sup P{JU —-0] >y} =1—-x <L (23)
0€[0,1]

In this case, a randomized rule does uniformly better (as measured by maximum risk over

©) than the best non-randomized rule.



2 Some Math

Before we begin, some math.

Definition 2 A set X' is partially ordered by a relation < if for x,y,z € X,
1.2 <yandy <z = & < z (transitivity)
2. ¢ <x forall x € X (reflexivity)
o r<yandy<z=z=y.

A subset Xy of X is totally ordered by < if for every x,y € X, either x <y ory < x. If Xy

is totally ordered, v,y € Xy, © <y, and x # y, we write v < y.

That every nonempty partially ordered set contains a maximal totally ordered subset is

Hausdorff’s maximality theorem.

Definition 3 Suppose the sets X' and Y are totally ordered. Let K(x,y) : X x Y — R.
We say K(x,y) is sign regular of order r (SR, ) if for every 1 < m < r there is a constant
em = t1 such that for every pair of increasing sets of elements (x1 < x93 < ... < &) and

(1 <y2<...<Ym),

[7(1’1791) K(:z;l,yg) [((xlaym)

K L1yX25- -3 Tm - [((x%yl) [((l'z,yg) [((x%ym)
Cm, =

Yi,92,- - Um

K(@m, 1) K(xm,y2) - K(Tm, Ym)
(24)

where the vertical bars denote the determinant of the matriz. If the inequality 24 is strict,
K is said to be strictly sign regular of order r (SSR,). If all ¢; equal +1, 1 < j <r, K is
said to be totally positive of order r (TP, ). If all ¢; equal +1, 1 < j <r, and the inequality
24 is strict, we say K is strictly totally positive of order r (STP, ). If the inequality 24 holds
for all finite r, r is omitted from the notation, and K is said to be sign reqular (SR), strictly
sign regular (SSR), totally positive (TP), or strictly totally positive (STP), respectively.



For statistical applications, a very useful fact is that the “kernel” K (x,y) associated with
the “density” of a one-parameter exponential family is totally positive. That is, if X' and )
are totally ordered subsets of R, the kernel K (xz,y) = (x)e™ is totally positive. This follows
from the fact that an exponential polynomial 3°7_; p;(y)e“?, where ¢; # ¢; for 1 # j, and p;
is a real polynomial of degree d;, either vanishes identically, or has at most n — 1+ 3°7_, d;

zeros (counting multiplicities).

Definition 4 The lower number of sign changes of a finite real-valued sequence (x;)7,,
S~ ((x;)), is the number of sign changes in the sequence, discarding zeros. The upper number
of sign changes of (z;), ST((x;)), is the maximum number of sign changes in the sequence
when the terms that equal zero are counted as having arbitrary signs. Let | be a real-valued
function defined on a totally ordered subset T of R. The lower number of sign changes of f,
S(f) s

() = sup S, (25)

m<oo, {z;}CTw<ze<...om

and the upper number of sign changes of f, ST(f), is

ST = sup ST (2))75)- (26)

m<oo, {z;}CTw<ze<...om

A very important result (which we shall use presently) is that transformations induced
by a sign-regular kernel are variation diminishing: they do not increase the number of zero-

crossings of a function.

Theorem 6 (Karlin, §3, Theorem 3.1) Let K(x,y) : X x Y — R be Borel measurable,
where X and ) are totally ordered topological spaces. Let p be a sigma-finite reqular measure
on Y, such that p(U) > 0 for each open set U for which UNY # 0. Let X be a totally
ordered topological space, and let K(x,y) : X x Y — R be Borel-measureable, and assume
that [y K(x,y)du(y) exvists for every x € X'. Let f: Y — R be a bounded, Borel-measurable
function on Y. Define the transformation (Tf): X — R by

(1)) = [ K(x9)fw)dn(y) (27)



1. If K(x,y) is SR,, then if S=(f) <r —1,

ST < 57(), (28)

If K is TP, and f is piecewise continuous, then if S=(f) = S™(T'f) <r —1, f and

T f have the same sequence of signs as their arguments increase.

2. If K is SSR, and f #0 a.e.(u),
STTL) < S7(f) (29)
ifS=(f) <r—1

A transformation that does not increase the number of zero crossings of a function is
called variation diminishing. Because the kernel associated with a one-parameter exponential
family is T'P, the theorem implies that integration against the density of an exponential
family is variation diminishing.

For example, we obtain the Normal distribution with unit variance by taking g(x) =

e~ /2 /\/2x and du(y) = e™¥"/2dy. Suppose f is bounded and Borel-measurable. Let

(D) = [ Fwye2Vame e 2y
= [ e oy
= [ F)éle—y)dy
= fxo, (30)

where ¢ is the density of the standard normal distribution and * denotes convolution. Then

ST(fx¢) < 57(f)
In this case, K(x,y)du(y) is a probability density for fixed . Suppose Y is a random
variable with that density. Then a different notation for the transformation T'is (T f)(x) =

See Karlin, 1968, Total Positivity, Stanford Univ. Press, Stanford CA, for more on total

positivity.
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