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1 More on Equivariant Confidence Sets

Definition 1 Fquivariant Confidence Set. Suppose that the set of distributions Pe on X is
preserved under the group G, and let G be the group of transformations on © induced by the
action of G on X. Suppose that the action of G on the component 7(v) of the more general
parameter v depends only on 7(v); that is, 7(g(v)) = 7(g(7)) if T(v) = 7(v). For eachg € G,
let S =A{r(g(v)):7(v) € S}. If S(x) is such that

gS(x) = S(gx) Ve e X,g € G, (1)
we say S is equivariant under G.

Lehmann (TSH, Ch. 6.11) gives several examples of equivariant confidence sets; the
following is taken from there.
Example. Suppose X = (Xi, X;) has independent, unit variance, normally distributed
components with mean § = (61,6;). Let G be the group of rigid motions of the plane



(translations and rotations, but not “distortions”). That is

Pe = { bivariate normal distributions with independent, unit variance components, and mean # € R},

(2)
and ©® = R2? The sample space is X = R? as well. The transformation § € G on y =
(71,72) € O induced by the action of ¢ € G on @ = (x1,23) € A is just g itself. One

equivariant family of confidence sets for 8 is
S(e)={v €0 :(z1 &) + (12 &%)" <} (3)

(circles centered at the data). To see this, note that for ¢ a rigid-body transformation of the
plane, v € S(z) <= gv € S(gx). Thus

gS(x) = {gy e R 1y € S(x)}
= {gv:v€esS@)}
= {97:97 € S(g2)}
= {v:veS(e)
= S(x). (4)

Definition 2 A family of 1 <a confidence sets for 7(0) is uniformly most accurate equiv-

ariant under G if it minimizes

Pyo{r(v) € S(X)} Yy €O s.t. 7(y) # 7(9) (5)

amonyg all confidence sets S(x) that are equivariant under G.

Lemma 1 Lehmann, TSH, 6.11 Lemma 5. Suppose that for each v € T = 7(0) there is a
group G, of transformations under which the problem of testing H : 7(0) = v. Let G be the

group of transformations generated by {G,},er. Suppose S(x) is a 1 &a confidence procedure
that is equivariant w.r.t. G. Let A(v) ={x:v € S(a)}.

1. The set A(v) is the acceptance region of a level o test of H, and it is invariant under

G, for each v € T.



2. If, for each v, A(v) is a UMP invariant level o test of H : 7(0) = v, S(x) are confidence

level 1 <a uniformly most accurate equivariant (w.r.t. G) confidence sets.

Thus if one has a family of tests A(v) that are UMP and invariant w.r.t. G,, and S(x) =
{v eT:x € A(v)}, then S(x) are uniformly most accurate equivariant. That is, uniformly
most accurate equivariant confidence sets result from inverting a family of UMP invariant
tests.

However, not all problems admit uniformly most accurate equivariant confidence sets, or
UMP invariant tests.
Example. (Lehmann, 6.12 Ex. 20.) Suppose X = (Xi,---,X,) is an i.i.d. sample from a
univariate normal distribution, with parameter § = (u,0?) € R x RT unknown. We want to
estimate 7(f) = 0. This problem is invariant under the group G whose elements translate
of all of the components of X by the same constant a. The statistic S* = >;( X =X)%is
sufficient for ¢%, and is invariant under G. The problem of finding a confidence set for o? is
invariant under positive scale changes: X; — bX;, S+ bS, o — ba, for b > 0. If a* € C(S?)
(note change of confidence set to C' to keep the traditional definition of ) is an equivariant

family of confidence sets, we need b2C'(S2) = C'(bS?), which gives
o2 € O(8%) & 0?/5% € 1/52C(52) = C(1). (6)

Thus for a confidence set to be equivariant, it must be of the form
o2/5% € C(1), (7)

where

P.y{S7?eC(l)} =1%a (8)

This family of confidence sets does not contain one that minimizes the false coverage
probability.
Assignment 2. Show that there is no uniformly most accurate confidence set among the
collection of confidence sets that satisfy 6 and 8.

This leads one to consider other loss functions for confidence regions (such as the expected

volume, which you explored using the Ghosh-Pratt identity in the last assignment).



Lehmann (TSH, 6.12) discusses some optimality measures to use in conjunction with the

restriction to equivariant confidence sets, for example, minimizing the measure

/C o 9)

(with v Lebesgue measure on R), or minimizing the scale-invariant measure

“Ldy. 10
/cm” v (10)

This measure has the advantage that if the optimal confidence interval for o is (o_,04),
then the optimal confidence interval for ¢ is (¢, 07 ).

Even when there is no group structure to the problem, considering similar measures of the
size of a confidence set can lead to practical confidence sets. For example, consider estimating
the mean 6 of a univariate, unit-variance normal from the observation X ~ N(6,1). We have
O = R and X = R. Suppose we want to minimize among all confidence intervals S(X)
the maximum expected length of the interval, whatever be §. That is, define R(0,5) =
Ep,|S(X)|, where |S| is the diameter of 5. The minimax procedure S* minimizes

sup R(0,.5) (11)

€0
among all Pg-measurable mappings from &' = R to intervals of R, which we might parametrize
by the two (measurable) functions ¢, u that map « to S(x) = ({(z),u(x)). Then one way to

pick a confidence interval procedure is to minimize

zlelg R(0,5) = Zlelg EPgu(X) <0(X)], (12)
subject to
eig(f) Po{({((X),u(X)) > 6}. (13)

If we let A(v) = (v ©2a/2,V + Zaj2), the smallest possible range of observations will be in the
acceptance region of each v, among level « tests. On inverting the tests to get confidence
intervals, we would get {(x) = & ©2,/2 and u(x) = £+ z4/2. If we had chosen the acceptance
region differently for some v (for example, picking the region to be an asymmetric interval

about v subject to the level « restriction), the acceptance region would have “reached” to



more distant observations, and there would have been some values of « that produced longer
confidence intervals. If the set on which we chose asymmetrical intervals had strictly positive
measure, this would result in a larger value of the expected length for some value of v. (For
other values, we might have ended up with expected length less than 2z,/5, but we are
interested in the maximum expected length.) This is not a proof, but it suggests one.

The “moral,” if there is one, is that a quite different consideration from group equivari-
ance or accuracy leads again to the same natural confidence interval. However, this approach
through optimization extends quite generally to situations in which there is no group struc-
ture, in which © is restricted in unusual ways, and in which there is no most powerful test
to exploit. The direction this leads is to restrict the class of procedures (confidence sets)
through their functional dependence on the data. For example, one might restrict atten-
tion to confidence sets that are intervals whose endpoints are affine functionals of the data:
l(x) = a+ bx, u(x) = ¢+ dx, or even to intervals {(x) = ©a + bz, u(x) = a + ba.

In general, the restriction to such procedures can cost a lot, in that the minimax risk
over affine procedures might be much larger than the minimax risk over all measurable
procedures. However, in some problems, it is possible to bound the “inefficiency” of affine
procedures relative to more general nonlinear ones.

Consider, for example, the problem of estimating the mean 6 of a unit-variance normal
from a single observation X ~ N(6,1), when 6 is known to lie in the interval © = [&e, ¢].
This is called the “bounded normal mean” problem. This problem is a cartoon of many
inference problems in science in which there are extrinsic physical constraints on the pa-
rameter of interest. For example, a spectral absorption coefficient must be between zero
and one, and energies must be nonnegative, and can sometimes be bounded above using
physical arguments. Donoho (1994, Ann. Stat., 22, 238-270) shows how to reduce some in-
ference problems about functionals of an infinite-dimensional parameter to questions about
the bounded normal mean; we shall visit his work more extensively later.

For the moment, let’s consider point estimates that minimize mean-squared error rather,
than interval estimates. We seek the estimator §* that minimizes

sup Eg(0(X) <0)? (14)



among all Pg-measurable estimators é, where Iy is shorthand for Ep, .
The natural estimator ignoring the constraint § € © = [&e, ¢] has maximum risk 1 over

©. The “truncation” estimate

z, |z|<e
bu(z) = e, T>c¢ (15)
S, 1< e

has maximum risk for § = 0, for which the risk is
/c 2 p(x)dz + 27 ®(&c), (16)
where ¢(x) is the standard normal density and ®(z) is the standard normal cdf.

The minimax affine estimate has risk
Ry = minmax FplaX + b <0
ab 6eO

= minmax Fy|aX + b <0
) 96@

a,b

= mibnrgl%x Fyla(X <0) 4+ (1 ©a)f + b|2
a, €

= mibnrgl%x{anar(X) + (1 ©a)d + 6)2}. (17)
a, €
We have Var(X) = 1. The risk is quadratic in 6 with a positive leading coefficient, so the

maximum will be attained at either ¢ or ¢:

max a® + (1 ©a)d + 6)2 = a*+ maX{((l Sa)e+ 6)2, (&l ©a)e+ b)z}

fe[—c,c]
> a’+ ((1 &a)e)?, (18)

so the optimal value of b = 0. Stationarity then gives the optimal a as the solution to

2
24 241 &a) = 0 :»a:lfr—cz, (19)
and thus
2 2 71° 2 1’ 2
mamrgle%XEﬂaX@m = ll-l-czl -|-[1<:>1+02] ¢
2
_ c? +[ 1 ]202
1+ ¢? 1+ ¢?
9 1+ ¢
=" —
(14 ¢2)?
2
¢
= 20
T (20)



Donoho, Liu, and McGibbon (1990, Ann. Stat., 18, 1416-1437) show that for this problem
the minimax affine risk is no larger than 5/4 of the minimax nonlinear risk.
Let’s consider confidence intervals. Suppose we restrict attention to fized-length confi-

dence intervals. That is, we consider intervals of the form
I(x)=TI(6,x) =[6(x) &x,0(x)+ x], (21)

where y does not depend on the data. To guarantee 1 <« coverage probability over O, we
need

glg(f) Pi{Z 3560} >1<a. (22)

The risk is y. The minimax risk is

XN.a(c) = inf {X : gig(f) P,{Z >0} > 1<:>oz} , (23)

§ measurable

and the affine minimax risk is

X4.a(c) = mibn{x : gig(f) Py{[eX+b&x,aX+b+x]20} > 1<:>oz} : (24)

Because the loss (the half-length of the confidence interval)is not random, the loss is the
same as the risk. Clearly yn.a(¢) < xa.a(c). Because picking a = 0, b = 0, allows one to
take ¥ = ¢, Ya,a(c) < ¢. Furthermore, taking a = 1, b = 0 allows one to take y = z4/2, s0
XA,a(€) < zajz. Thus

XNo(€) < Xaa(c) < min(e, zay2). (25)

Suppose ¢ < z,. Then clearly, Yn.o(¢) < xa.a(c) < 2,4, because the interval [z, z,] always
covers. However, when the constraint is this restrictive, there is nothing better one can do
than pick [©z,, 24)-

To see this, first note that it suffices to consider é(x) monotone in  and symmetric about
x =0 (6(&x) =<d(x)). (Why?) Suppose the optimal (nonlinear) yno = x < ¢ < z5. Then
there would be no loss in assuming 6(z) < c&vy, ¢ > ey, 6(x) > ec+ vy, ¢ < <. In
order to have coverage probability 1 &« when § = <¢, the interval must be centered at
some value of * < y < ¢ < 0 whenever z, ¢ > 0, which is a contradiction, because of the

monotonicity and symmetry requirements. The linear rule é(x) = 0 can be used with y = ¢



to get 100% coverage, so xna(¢) = Yaa(c) = ¢, ¢ < z,. Furthermore, as the constraint
¢ — 00, © becomes less informative, and x 4,4(¢) and xn.o(c) = 24/2; Both the minimax and
affine minimax risks are clearly monotone in ¢. Thus for ¢ < z,, Yn.a(¢) = Xa,0(c), and for
C > Za,
Zo S XNal(€) < Xaalc) < 24y, (26)
which implies
o(c) 24
iiaic; : 212'
For o = 0.05, this ratio is about 1.96/1.645 = 1.19. Thus in this problem, the minimax

(27)

affine fixed-length 95% confidence interval is at most about 20% longer than the minimax
fixed-length 95% confidence interval.

Problem. (not assigned) Show that it indeed suffices to consider monotone, symmetric rules
6(x) at which to center a fixed-length confidence interval for the bounded normal mean.

It is a rather unsatisfactory property of the minimax fixed-length interval in this problem
that if the prior information is sufficiently strong (e.g., if ¢ < z,), the optimal procedure
ignores the data and just returns the prior information. This is an artifact of looking only
at the worst-case behavior.

In contrast, one might consider intervals whose lengths depend on the data, for example,
the truncation interval

Ti(x) =[x ©2a)2, T + 2a72) N [Ec, c]. (28)

This interval has random length, bul the half-length never exceeds min{c, z,/5. A different
criterion of optimality one might consider (rather than the fized-length) is

RY(T) = sup E4|Z(X)|. (29)

€0

This is the largest expected length of the confidence interval.
Assignment 3. Find RT(Z;) fora = 0.05, ¢ = 1/2,1,2,5,10. Compare with R* (affine minimaz fized-lengs
Note that the risk of the affine minimax procedure is just its fixed length, whether measured
by RT or by the loss function for which it was derived. Hint. For what value of 6 € © is the

maximum expected length altained?



2 Bayesian Credible Regions

The Bayesian analogue of a confidence set is a credible region. To construct a credible region,
one must think of the parameter 7(0) as itself being a random variable. Denote its (prior)

distribution, which is assumed to be known completely, by Pr.
Definition 3 A level | <o credible region for the parameter 7(0) is a set S(x) such that
Pr{r(0) € S(z)|X =2} > 1 ©a. (30)

That ts, S is a set such that the posterior probability that S contains T, given the data, is at

least 1| &a.

Note that there is not a unique S with this property; a criterion often used to obtain a
unique S is to take S to be a level set of the posterior distribution of . Another is to introduce
a loss function associated with a measure of the “size” or “volume” of the confidence set (as
we have been discussing in a frequentist context), and to find the region that minimizes that
loss (or the risk) subject to the posterior coverage constraint.

Assignment 4: Bounded Normal Mean Suppose Po = {N(7,1) : v € [©a,a]}, X ~
N(0,1), © = [&a,a], 0 ~ Ulca,a]. Let D be the set of Lebesque-measurable subsets of R.
Let L(0,d) = u(d), where pu(d) is the Lebesque measure of the set d. (1) Characterize (give
equations that determine it) a 1 <« credible region d for 0 that minimizes L given X = x.
(2) Is it sufficient to assume that d is an interval? (3) Does this approach also minimize the
risk Ep L = Epyu(d)? (4) Find the credible region explicitly for a = 1, @ = 0,0.5,1,2,10.
(5) For a = 1, find explicitly or estimate by simulation the risk Ep,L = FEp.pu(d) of this

procedure.



