Statistics 210B, Spring 1998

Class Notes

P.B. Stark

stark@stat.berkeley.edu

www.stat.berkeley.edu/~stark/index.html

January 29, 1998

Second Set of Notes

1 More on Testing and Confidence Sets

See Lehmann, TSH, Ch. 3, 4, 5.

Definition 1 S(X) is a confidence level $1 - \alpha$ confidence set for the parameter $\tau(\mathbf{P}_{\theta})$ if

$$\mathbf{P}_{\nu}\{S(X) \ni \tau(\nu)\} \ge 1 - \alpha \ \forall \nu \in \Theta.$$
(1)

Definition 2 Accuracy of Confidence Sets. The accuracy at $\tau(\gamma)$ of the confidence set S(X) for the parameter $\tau(\cdot)$ is

$$\mathbf{P}_{\nu}\{S(X) \ni \tau(\mathbf{P}_{\gamma})\}, \tau(\nu) \neq \tau(\gamma).$$
⁽²⁾

That is, it is the probability that the confidence set contains $\tau(\gamma)$, when that is not the true value of τ .

The accuracy is the same as the "false coverage" probability that appeared on the right hand side of the Ghosh-Pratt identity. Typically, when there are nuisance parameters, there is no confidence set S(X) that minimizes 2 for all γ such that $\tau(\nu) \neq \tau(\gamma)$ (there is no *uniformly most accurate* confidence set). However, if one restricts the class of confidence sets in ways that are sometimes reasonable, there are then optimal sets in the restricted class.

Definition 3 A $1 - \alpha$ confidence set S(X) for the parameter $\tau(\theta)$ is unbiased if for all ν ,

$$\mathbf{P}_{\nu}\{S(X) \ni \tau(\gamma)\} \le 1 - \alpha \ \forall \gamma \ s.t. \ \tau(\nu) \neq \tau(\gamma).$$
(3)

That is, a confidence set is unbiased if the probability of covering a false value of τ is smaller than the confidence level $1 - \alpha$. In some sense, a biased confidence set treats some parameter values τ specially. For example, a biased 95% confidence set for the mean θ of a unit variance normal is $\{0\} \cup [X - 1.96, X + 1.96]$. The coverage probability is 95% for all $\theta \in \mathbf{R}$ except $\theta = 0$, which is in the set with probability one.

The analogous property of a test is that there is no alternative value of τ for which the probability of rejection is less than the level α of the test:

Definition 4 A level α test δ of H against the alternative K is unbiased if

$$\beta_{\delta}(\mathbf{P}_{\nu}) \le \alpha \qquad \forall \nu \in H \tag{4}$$

and
$$\beta_{\delta}(\mathbf{P}\nu) \ge \alpha \qquad \forall \nu \in K.$$
 (5)

If the second inequality is strict (>), the test is strictly unbiased.

There exist UMP unbiased tests in many problems for which there is no UMP test, in particular, when $\tau(\nu) \neq \nu$ (when there are nuisance parameters on which the distribution of X depends, but which are irrelevant to the truth of the hypothesis).

Lemma 1 (Lehmann, TSH, Lemma 4.1.1) Suppose $\Theta \subset \mathbf{R}$, and let Ω be the common boundary of $\{\nu : \mathbf{P}_{\nu} \in H\}$ and $\{\nu : \mathbf{P}_{\nu} \in K\}$. If \mathbf{P}_{Θ} is such that the power function $\beta_{\delta}(\mathbf{P}_{\gamma})$ is a continuous function of γ for every δ , and if δ_{0} is UMP among all level α tests such that

$$\beta_{\delta}(\gamma) = \alpha \ \forall \gamma \in \Omega, \tag{6}$$

then δ_0 is UMP unbiased.

This lemma reduces questions about UMP unbiased tests to their behavior on the boundary between the null and alternative, provided the level is a continuous function of the parameter.

In one-parameter exponential families, we saw that there exist UMP tests of one-sided hypotheses about the parameter. For two-sided hypotheses $H : \gamma_1 \leq \theta \leq \gamma_2$ versus $K : \theta < \gamma_1$ or $\theta > \gamma_2$, there exist UMP unbiased tests; the form of their decision functions is (Lehmann, TSH, 4.2)

$$\phi(x) = \begin{cases} 1, & T(x) < c_1, \ T(x) > c_2 \\ a_i & T(x) = c_i, \ i = 1, 2 \\ 0 & c_1 < T(x) < c_2), \end{cases}$$
(7)

with c_1 and c_2 chosen s.t.

$$E_{\mathbf{P}_{\gamma_1}}\phi(X) = E_{\mathbf{P}_{\gamma_1}}\phi(X) = \alpha.$$
(8)

Example. (Lehmann, TSH, §4.2) Suppose \mathbf{P}_{Θ} , $\Theta = [0, 1]$ is distributions of the number of successes X in a sequence of a fixed number n of independent trials, each with probability θ of success. (*I.e.*, $X \sim \operatorname{Bin}(n, \theta)$.) This is a one-parameter exponential family. Consider the null hypothesis $H : \mathbf{P}_{\theta} = \operatorname{Bin}(n, \gamma)$, for fixed $\gamma \in [0, 1]$. The null hypothesis is of the form 7 with $\gamma_1 = \gamma_2 = \gamma$, and T(x) = x, so the constraint 8 reduces to

$$E_{\mathbf{P}_{\gamma}}\phi(X) = = 1 - \sum_{x=c_1+1}^{c_2-1} {}_{n}C_x\gamma^x(1-\gamma)^{n-x} - a_{1n}C_{c_1}\gamma^{c_1}(1-\gamma)^{n-c_1} - a_{2n}C_{c_2}\gamma^{c_2}(1-\gamma)^{n-c_2} = 1 - \alpha$$
(9)

Note again that in practice, typically one would choose α so that $a_1 = a_2 = 0$, rather than use a randomized test.

Definition 5 A family of confidence level $1 - \alpha$ confidence sets S(X) for $\tau(\theta)$ is uniformly most accurate unbiased if for all $\nu \in \Theta$, it minimizes the probabilities

$$\mathbf{P}_{\nu}\{S(X) \ni \tau(\gamma)\} \quad \forall \gamma \ s.t. \ \tau(\gamma) \neq \tau(\nu).$$

$$\tag{10}$$

Confidence sets derived by inverting uniformly most powerful unbiased tests are uniformly most accurate unbiased.

2 Equivariant and Invariant Procedures

Definition 6 A group is a set \mathcal{G} and an operation $\circ : \mathcal{G} \times \mathcal{G} \to \mathcal{G}$ that satisfies for every g, h, k in \mathcal{G}

- 1. $g \circ (h \circ k) = (g \circ h) \circ k$ (associativity)
- 2. There exists a unique $e \in \mathcal{G}$ such that $e \circ g = g \circ e = g$ for every $g \in \mathcal{G}$ (existence of an identity element)
- 3. For each $g \in \mathcal{G}$, there exists $g^{-1} \in \mathcal{G}$ s.t. $g \circ g^{-1} = g^{-1} \circ g = e$.

Typically, the dot in the notation will be omitted, so we shall write gh (multiplication) in place of $g \circ h$. Another symbol commonly used for the group operation is +. Also, while formally a group is the pair (\mathcal{G}, \circ) , \mathcal{G} is commonly referred to as the group, with the group operation \circ understood from context.

Definition 7 A group of transformations on the set \mathcal{X} is a collection \mathcal{G} of transformations $g: \mathcal{X} \to \mathcal{X}$ and an operation $\circ: \mathcal{G} \times \mathcal{G} \to \mathcal{G}$ such that (\mathcal{G}, \circ) is a group.

For example, let $\mathcal{X} = \mathbf{R}^n$, and for each $\gamma \in \mathbf{R}^n$, let

$$g_{\gamma}: \quad \mathcal{X} \to \mathcal{X}$$
$$\nu \to \nu + \gamma \text{ (vector addition in } \mathbf{R}^n\text{)} \tag{11}$$

Let + denote the group operation, and define $g_{\gamma} + g_{\eta} = g_{\gamma+\eta}$. With these definitions, $(\mathcal{G} = \{g_{\gamma} : \gamma \in \mathbf{R}^n\}, +)$ is a group of transformations on \mathcal{X} . The identity element of the group is g_0 , the inverse of g_{γ} is $g_{-\gamma}$, and associativity of the group operation + follows from the associativity of vector addition on \mathbf{R}^n . This group is called the *translation group on* \mathbf{R}^n .

Definition 8 Invariance of decision procedures. A statistical decision problem (a set \mathbf{P}_{Θ} of distributions on an outcome space \mathcal{X} , a loss function L, and a set of possible decisions \mathcal{D}) is invariant under the group \mathcal{G} of transformations of the outcome space \mathcal{X} if

- The family P_Θ is closed under G, in the sense that for any γ ∈ Θ and any g ∈ G, there exists ν ∈ Θ such that if X ~ P_γ, gX ~ P_ν, with ν ∈ Θ, and the mapping ḡ : Θ → Θ, γ ↦ ν is one-to-one and onto (ḡΘ = Θ).
- 2. For each $g \in \mathcal{G}$, there is a transformation $h(g) : \mathcal{D} \to \mathcal{D}$ such that $h(g_1g_2) = h(g_1)h(g_2)$, and $L(\bar{g}\gamma, h(g)d) = L(\gamma, d)$ for all γ, g , and d.

Example. Suppose $\Theta = \mathbf{R}^m$, $\mathbf{P}_{\Theta} = \{N(\theta, I) : \theta \in \Theta\}$ is the set multivariate normal distributions with independent, unit variance components, $\tau(\theta) = \theta$, $\mathcal{D} = \mathbf{R}^m$, and that $L(\theta, \gamma) = \|\theta - \gamma\|^2$. Let \mathcal{G} be the translation group on \mathbf{R}^m . Clearly, the set \mathbf{P}_{Θ} is closed under \mathcal{G} : if $X \sim \mathbf{P}_{\theta}$, then $g_{\gamma}X \sim \mathbf{P}_{\theta+\gamma}$. The set of transformations on \mathbf{P}_{Θ} induced by the action of \mathcal{G} on \mathcal{X} is $\overline{\mathcal{G}}$, whose elements $\overline{g}(g_{\gamma}) = \overline{g}_{\gamma} \max \mathbf{P}_{\nu}$ to $\mathbf{P}_{\nu+\gamma}$. ($\overline{\mathcal{G}}$ is also a group, with the group operation defined by $\overline{g}_{\gamma} + \overline{g}_{\nu} = \overline{g}(g_{\gamma+\nu})$). If we define $h(g_{\nu}) : \mathcal{D} \to \mathcal{D}, \gamma \mapsto \gamma + \nu$, then $h(g_{\nu}g_{\eta})(\gamma) = h(g_{\nu})h(g_{\eta})\gamma$, and $L(\overline{g}_{\nu}\theta, h(g_{\nu})\gamma) = L(\theta, \gamma)$, as required by the conditions of equivariance.

When the decision problem is invariant under \mathcal{G} , it is reasonable to consider only *invariant* decision rules $\delta : \mathcal{X} \to \mathcal{D}$, for which $\delta(gx) = h(g)\delta(x)$. Lehmann (TSH, 1.5) draws a distinction between *invariant* and *equivariant* decision rules: for the former, h(g)d = d for all d, while for the latter, $\delta(gx)$ varies with g. In the invariant case, the decision problem is unchanged under $X \mapsto gX$.

Definition 9 Suppose we are testing H against K. Given a transformation g on \mathcal{X} , if $\{\mathbf{P}_{\bar{g}\nu}:\mathbf{P}_{\nu}\in H\}=H$ and $\{\mathbf{P}_{\bar{g}\nu}:\mathbf{P}_{\nu}\in K\}=K$, we say the problem of testing H against K is invariant under the transformation g.

The set of transformations under which a testing problem is invariant is always a group, with the group operation defined in the natural way; the induced set $\overline{\mathcal{G}}$ of transformations on \mathbf{P}_{Θ} also form a group ($\overline{\mathcal{G}}$ is a homomorphism of \mathcal{G}).

Definition 10 A function $M : \mathcal{X} \to \mathcal{Y}$ is maximal invariant with respect to the \mathcal{G} of transformations on a set \mathcal{X} if

1.
$$M(x) = M(gx)$$
 for all $g \in \mathcal{G}$ (M is invariant under \mathcal{G}) and

2. $M(x) = M(y) \Rightarrow x = gy \text{ for some } g \in \mathcal{G}.$

A test is invariant if and only if it depends on x only through a maximal invariant M(x). For example, suppose the observation X is an iid sample of size n from some common distribution. The distribution of X is clearly invariant under permutations of its components, so we could work instead with the set of order statistics without losing any information about θ . The order statistics are in fact a maximal invariant of the permutation group, so invariant tests regarding θ need depend on X only through its order statistics. Any test that treated the components of X differently would have an *ad hoc* flavor. *Ceteris paribus*, it makes sense to base tests on a maximal invariant function of the data X (with respect to \mathcal{G}) if the testing problem is invariant under \mathcal{G} .

Subject to some measurability considerations, the set of all invariant tests is characterized by the set of all decision functions $\phi(x) = h(M(x))$ where M(x) is a maximal invariant. Basing tests on sufficient statistics reduces the outcome space \mathcal{X} . Invariant tests reduce not only the outcome space \mathcal{X} , but also the parameter space Θ :

Theorem 1 (See Lehmann, TSH, 6.3 Th.3.) If M(x) is maximal invariant with respect to \mathcal{G} and if $v(\theta)$ is maximal invariant with respect to the induced group $\overline{\mathcal{G}}$, then the distribution of M(X) depends on θ only through $v(\theta)$.

The utility of this theorem results from the fact that M(x) and $v(\theta)$ can turn out to be real-valued, even when the dimensions of \mathcal{X} and Θ are large, with the distribution of M(X)having monotone likelihood ratio in $v(\theta)$. That makes it possible to find UMP invariant tests using the one-dimensional optimality theory we saw earlier.

Definition 11 A test with decision function ϕ is almost invariant with respect to \mathcal{G} if for all $g \in \mathcal{G}$, $\phi(gx) = \phi(x)$ except on a \mathbf{P}_{Θ} -null set \mathcal{N}_g that can depend on g.

Remark. The power function of a test that is almost invariant under \mathcal{G} is invariant under the induced group $\overline{\mathcal{G}}$. The converse is not true in general.

Remark. Unbiasedness and invariance are not equivalent in general, in that UMP unbiased tests can exist when UMP almost-invariant ones do not, and *vice versa*. However, Lehmann

(6.6, Th. 7) shows that if in a given testing problem, there exists a UMP unbiased test with decision function ϕ^* that is unique up to sets of measure zero, and there also exists a UMP almost-invariant test w.r.t. some group \mathcal{G} , then the UMP almost-invariant test is also unique up to sets of measure zero, and the two tests are the same a.e.

Definition 12 Equivariant Confidence Set. Suppose that the set of distributions \mathbf{P}_{Θ} on \mathcal{X} is preserved under the group \mathcal{G} , and let $\overline{\mathcal{G}}$ be the group of transformations on Θ induced by the action of \mathcal{G} on \mathcal{X} . Suppose that the action of $\overline{\mathcal{G}}$ on the component $\tau(\nu)$ of the more general parameter ν depends only on $\tau(\nu)$; that is, $\tau(\overline{g}(\nu)) = \tau(\overline{g}(\gamma))$ if $\tau(\nu) = \tau(\gamma)$. For each $g \in \mathcal{G}$, let $\tilde{g}S = \{\tau(\overline{g}(\nu)) : \tau(\nu) \in S\}$. If S(x) is such that

$$\tilde{g}S(x) = S(gx) \ \forall x \in \mathcal{X}, g \in \mathcal{G},$$
(12)

we say S is equivariant under G.

Equivariant confidence sets result from inverting invariant tests.