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Irirst Set of Notes

1 Hypothesis Testing and Confidence Sets

1.1 Set-up

We are to collect a vector of data X € A&, which has probability distribution Py, with
(possibly infinite-dimensional) parameter § unknown, except that § € O, where O is a
known set. Typically, X = R", but it might instead be a more general measurable space of
possible observations. We are interested in making statistical inferences about 7(8), which
might be 6 itself, or a function of § (for example, for a univariate normal we might have

0 = (u,0%), and be interested in 7(0) = ). Let
T=7(0)={y:3ne€0sty=17(n)}, (1)

and

Po = {P,:n € 0}. (2)

We wish to test the null hypothesis H : 7(6) € Ty C T against an alternative K not yet
specified. In a deliberate “overloading” of notation, let H also stand for {P,,n € © : 7(n) €
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Ty} ( the set of probability distributions for which the null hypothesis H is true), and let
K also stand for {P,,n € ©® : 7(n) € T} (the set of probability distributions for which the

alternative hypothesis K is true). We shall typically assume that H U K = Peg.

Definition 1 If {P, € H} be a singleton set (just one distribution), we say the null hypoth-
esis H is simple. If the alternative K be a singleton set, we say K is simple. If an hypothesis

is not simple, it is composite.

Definition 2 A (significance) level « test of the hypothesis T(8) € Ty is a (possibly random)
measurable decision rule 6(X) : X — { accept, reject} such that
sup P, {6(X) = reject} < a. (3)
{PpeH}
The constant « is (an upper bound on) the probability of a false rejection.
The most common decision rules (deterministic rules) reject when the data X fall outside
a set A = Ay that satisfies

sup P {X & Ay} <o, (4)
{PreH}

The set Ap is called the acceptance region of the test; A% is the rejection region of the
test. Under the Neyman-Pearson paradigm, the term “acceptance region” is a misnomer—
one never “accepts” the null hypothesis; one merely fails to reject it given certain data
(evidence) X. I shall often blur the notational distinction between a test and its acceptance
region.

Another family of decision rules performs a random experiment that depends on the
observed value of X, such that for each x, the null hypothesis is rejected with probability
#(x) and not rejected with probability 1 — ¢(a). To have a significance level o randomized

test, we need

sup B,0(X) = [ 6(2)dP, (@) < o (5)

{P,eH}
Deterministic rules correspond to decision functions ¢ that take only the values 0 (do not
reject, with probability 1) and 1 (reject, with probability 1).
Typically, the set Ay is defined in two steps: first, one selects a statistic 7'(.X) (a function
of X that is P.,-measurable for all ¥ € O, and that does not depend on #), then one defines



a subset A7, of the range of T, with the property that

{Ifueg]}Pn{T(X) Z Ary} = a. (6)

Thus Ap, a subset of X, is the pre-image under T of Ar,, a subset of the range of T'. (In
symbols, Ay = T~ (Ar,).)
Suppose that the range A of X is endowed with a distance

d(-,): X xX — R*F
(z,y) — d(z,y), (7)
where RT are the nonnegative reals. (Recall that a distance d(-,-) on a set X' must satisfy
1. 0 <d(x,y) <o0;d(x,y) =0 < x =y (positive definiteness)
2. d(x,y) = d(y,x) (symmetry)
3. d(z,z) < d(zx,y) + d(y, z) (triangle inequality)
for all x,y,zin X.)

Definition 3 The diameter of a set A on which a melric d is defined is

Al = sup d(z,y). (8)

z,yEA

The radius of A relative to the point x s
|A|6’ = sup d(l’,y). (9)
yeA

One natural criterion of optimality of an acceptance region is that its diameter be min-
imal. This is related to (but not equivalent to) the power of the test against a family of

alternatives; vide infra.

Definition 4 A family of tests for 7 € T is a set-valued function A, such that for each

v €T, A, is the acceptance region for a level o test of the hypothesis H : 7 = 7.

Examples.



1. Suppose that Py is the normal distribution with mean § and unit variance, that © = R,
7(0) = 6, and that we observe X ~ Py. Let z, be the X critical value of the standard
normal distribution; that is,

PO{X > Z/\} = A (10)
Then
Ay = (Y= 2zay2,7 + 2a2) (11)

is a family of level « tests for 7(8) = § € R.

2. Suppose Pg is the family of distributions on R that are continuous with respect to
Lebesgue measure. Let 7(8) be the 90th percentile of the distribution parametrized by
0. We observe X = {X;}7_; i.i.d. Fy. Let T, : R® — N equal #{X; > v}. (N are
the nonnegative integers). For all v such that 7(v) = ~, the probability distribution of
T,(X) is binomial with parameters n and p = 0.1. Thus for any ~, we can find integers

a_ =a_(vy,n,a) and ay = ay(vy,n,a) such that
P AT, (X) ¢ [a_,a4]} <o Yvstr(v)=17. (12)
Such a pair of mappings defines a family of level « tests for 7(8) € R.

3. Suppose that Pg is the set of probability distributions on R that are continuous with
respect to Lebesgue measure; let § be the distribution function of the “true” measure,
and suppose we are interested in 7(0) = 6. We observe X = {X;}"_; i.i.d. Py. Let 0,
denote the empirical distribution

N

0,{(—00, 2]} = %ZH:LQXJ, (13)

i=1
where 1g is the indicator function of the event B. For any two probability distributions

P, P;. on R, define the Kolmogorov-Smirnov distance
dics(P1, P2) = |[P1 = Pofl ks = sup [Py {(—o00, 2]} — Pof(—oo,al}|.  (14)
r€

There exist universal constants y, so that for every continuous (w.r.t. Lebesgue mea-

sure) distribution 6,

Py {10 = Oullxcs > xale)} = o (15)

4



This is the Dvoretzky-Kiefer-Wolfowitz indquality. Moreover, Massart (Ann. Prob.,
18, 1269-1283, 1990) showed that the constant

In 2

Xnle) <4/ (16)

is tight. For y = (y1,--+,yn) € R", let g, be the probability measure on R whose

distribution function is 1/n3"%_ 1,5, . Then
Ay ={y e R Iy = dalls < Xa} (17)

is a family of level a tests for § € O.

1.2 Most Powerful Tests

Definition 5 The power [ of the test 6 of H against the alternative K is

p=p06,K)= _inf P, {6(X) = reject}. (18)

P.eK
That is, (6, K) is the smallest probability of rejecting the null hypothesis when the value of

the parameter of interest, 7(0), is in the alternative set Tk.

In the Neyman-Pearson paradigm for hypothesis testing, one is concerned with the prob-
abilities of two kinds of errors: rejecting the null hypothesis H when it is in fact true (a Type
[ error), and failing to reject the null hypothesis when it is in fact false (a Type II error).
The significance level of a test is a bound on the probability of a Type I error; the power of
the test against the alternative K is 1 —supp o P, {Type Il error}.

For a given bound « on the chance of a Type I error, one is naturally led to maximize
the power F(K). This can be thought of as a more general statistical decision problem with

two zero-one loss functions: Define

. 07 P@ € H
L1(8,reject) = (19)
1, Poe H
L1(8,accept) = 0,V0 € O, (20)
and
Ly(8,reject) = 0,V0 € O, (21)
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0, Ppe H
Lo(8, accept) = (22)
1, Pog H
Then the problem of finding the most powerful test is to find the decision rule 6 that mini-
mizes FLy(0,6(X)) subject to the constraint EL;(0,6(X)) < a.
For the case H and K are simple, let Py = H and Px = K. Considering first nonran-

domized tests, one wants to find Ay to maximize

= [ o Pic(2) (23)

subject to
dPy(z) < a. 24

Subject to a bound on the chance of a Type I error, the best points to exclude from Ay
are those that are most probable under K relative to their probability under H. Let r(z) =
dP g (x)/dPg(x). Then the most powerful nonrandomized level « test § has

A ={x:r(x) > ¢}, (25)

where ¢ solves

Pu{X & Ay} :/ | dPu(x)=a. (26)

zir(zw)>c

If Py contains atoms, it can happen that for some values of «, the most powerful determin-
istic decision rule 6 that attains exactly level « is not given by the likelihood ratio region
25 for some special values of a (for a given value of ¢, the level would be too large, while
for infinitesmaly larger ¢, the level would be too small). If one allows randomized decisions,
that problem does not occur; one makes a deterministic decision when r < ¢ or r > ¢, and
makes a random decision for r = ¢, with probability of rejection chosen s.t. the overall level
is . A more common approach (essentially ubiquitous in practice) is to choose a to avoid

such pathology.

Theorem 1 Fundamental Lemma of Neyman and Pearson (See Lehmann, TSH, 3.2, The-
orem 1.) Suppose Py and Py have densities py and px relative to a measure p (e.g.,

PH + PK). Then



1. There is a decision function ¢ and a constant ¢ such that

EH¢(X) =, (27)

17 pK(l') > CpH(l')
o(z) = (28)
0, pr(x) < cpu(x).
(The value of ¢ for px(x) = epu(x) is adjusted to give Ego(X) = a; depending on «,

H, and K, this can result in a randomized decision rule.)

2. If a decision function ¢ satisfies 27 and 28 for some c, it is most powerful for testing

H against K at level a.

3. If ¢ is the most powerful decision function for testing H against K, then for some c it
satisfies 28 a.e.(p), and it satisfies 27 unless there is a level < o test of H against K
with 8 =1.

The fundamental lemma of Neyman and Pearson applies just to simple null and alterna-
tive hypotheses. One might hope that when H and K were composite, the same test would
be most powerful for all P,, € H against all P, € K; unfortunately, that is not typically the
case. Such a test, when it exists is called uniformly most powerful (UMP).

There is an important class of distributions with real parameters for which UMP tests

exist. Suppose P,, n € © = R has density p,(x).

Definition 6 The set of densities p, has monotone likelihood ratio (in T'(x)) if there exists
a function T : X — R such that for v <n

1. P, #P,, and

2. po(x)/p,(x) is a monotone non-decreasing function of T(x).

Theorem 2 (See Lehmann, TSH, 3.3, Theorem 2.) Suppose § € @ = R and X has density
pe(x) with monotone likelihood ratio in T(x). Let H ={P, :n <ng} and K ={P, : n >

nmt. (Such a K is called a one-sided alternative.) Then

1. A UMP level « test of H against K exists.
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2. The decision function ¢ for the UMP test is

L, T(z)>c¢
plr) =4 b T(x)=¢c (29)
0, T(z)<e,
with b and ¢ chosen to satisfy
Ep,, ¢(X) = a. (30)
3. For this test, the power
B(Py) = Ep,$(X) (31)

is a strictly increasing function of § at all points for which 0 < 3(6) < 1.
4. For all v, this test is UMP for testing 6 <~ against 0 > ~ at level B(7).
5. For any 0 < ng, the test minimizes () among all level « tests.
Definition 7 Let Py, § € © C R have density
pox) = C(@)eQ(Q)T(l’)h(aj) (32)

relative to some measure p, with Q(-) strictly monotone. Then {Py : 0 € O} is a one

parameter exponential family.

Remark. The one-parameter exponential families have monotone likelihood ratio in T'(x).
Remark. Lehmann refers to a converse due to Pfanzagl (1968) that under weak regularity
conditions, if there exist level « UMP tests against one-sided alternatives for all sample sizes,

Po is an exponential family.

1.3 Confidence Regions.
Definition 8 A 1 — « confidence region for 7(8) is a random set S(X) C T satisfying
Po{S(X)>7()} >1— . (33)

The most common way to construct a 1 — « confidence region for 7(8) is by “inverting”

a family of tests for the hypotheses 7(6) = ~:



Theorem 3 Duality between Tests and Confidence Regions. (See Lehmann, TSH, 3.5, The-
orem 4). Let A, be a family of acceptance regions for level a tests of the hypotheses 7(0) = ~.
For each value of x € R", define

S)y={reT:ze A} (34)
Then S(X) is a confidence region for 7(8) with confidence level 1 — av.

Theorem 4 The Ghosh-Pratt Identity. (See Pratt, J.W., 1961. Length of confidence in-
tervals, JASA, 56, 5/9-567; Ghosh, J.K., 1961. On the relation among shortest confidence
intervals of different types, Calcutta Stat. Assoc. Bull., 1/7-152.) For a set S(x) C O, let

u(St)= [ dul) (35)

for some measure p on ©. Then

B, n(S(X)) = [ P{S(X) 2 7}du(). (36)

The Ghosh-Pratt identity relates the expected “volume” (w.r.t. the measure p) of a
confidence set to the probability that points other than the true parameter are in the set:
the right hand side is the integral of the “false coverage” probability. That is in turn related
to the power of the tests to which S is dual against the alternative with respect to which the
expectation and the probability are calculated. For example, suppose that @ = R™, that
(1 is Lebesgue measure (so the expectation on the left is the “ordinary” expected volume of
the confidence set) and that S is the dual of a family of tests that are most powerful against
the alternative # = 0. That is, the sets A, minimize P,{0 > A,}. Then the confidence set
S(X) has minimal expected volume when the true value of § is 0 among all confidence sets.

Brown, Casella and Huang (Optimal Confidence Sets, Bioequivalence, and the Limacon
of Pascal, Brown Univ. Tech. Rept. BU-1205-M, 1993, rev.1994) use this result to develop
confidence sets for assessing bioequivalence. In the case X ~ N(6,1), the acceptance regions
of tests with optimal power against 0 can be derived from the likelihood ratio; Brown and
Huang obtain closed-form expressions for the shape of the resulting confidence sets.
Problem. Find a formula for a 1 — « confidence set for the mean of a Poisson distribution

from n i.1.d. observations, with minimal expected volume when the true mean § = 1. Is the
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set always an interval? Give the confidence set that results when X = 2. It might help to

read Brown and Huang.
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