
974 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 4, NO. 4, DECEMBER 2009

Election Audits Using a Trinomial Bound
Luke W. Miratrix and Philip B. Stark

Abstract—In November 2008, we audited contests in Santa Cruz
and Marin counties, California. The audits were risk-limiting: they
had a prespecified minimum chance of requiring a full hand count
if the outcomes were wrong. We developed a new technique for
these audits, the trinomial bound. Batches of ballots are selected
for audit using probabilities proportional to the amount of error
each batch can conceal. Votes in the sample batches are counted
by hand. Totals for each batch are compared to the semiofficial
results. The “taint” in each sample batch is computed by dividing
the largest relative overstatement of any margin by the largest pos-
sible relative overstatement of any margin. The observed taints are
binned into three groups: less than or equal to zero, between zero
and a threshold , and larger than . The number of batches in
the three bins have a joint trinomial distribution. An upper confi-
dence bound for the overstatement of the margin in the election as a
whole is constructed by inverting tests for trinomial category prob-
abilities and projecting the resulting set. If that confidence bound
is sufficiently small, the hypothesis that the outcome is wrong is re-
jected, and the audit stops. If not, there is a full hand count. We
conducted the audits with a risk limit of 25%, ensuring at least a
75% chance of a full manual count if the outcomes were wrong.
The trinomial confidence bound confirmed the results without a
full count, even though the Santa Cruz audit found some errors.
The trinomial bound gave better results than the Stringer bound,
which is commonly used to analyze financial audit samples drawn
with probability proportional to error bounds.

Index Terms—Dollar unit sampling, monetary unit sampling,
probability proportional to error bound sampling (PPEB),
risk-limiting audit, Stringer bound.

I. INTRODUCTION

E LECTRONIC voting machines and vote tabulation
software are complex and opaque, raising concerns

about their reliability and vulnerability. Audits can provide a
measure of “software independence,” controlling the risk that
errors—whatever their source—cause the apparent outcome to
differ from the outcome a full hand count would show [1]–[4].
Several states have laws mandating election audits, and others
are considering such laws [5].1 It is crucial to ensure that the
audit trail is accurate, durable, and complete from its creation
through the audit. If there is no audit trail, there can be no audit.
If there is an audit trail, but no audit, there is no assurance of
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1See also http://www.verifiedvoting.org/article.php?id=5816 (last visited
February 18, 2009).

accuracy. If there is an audit trail and an audit, but the audit
trail does not reflect the electoral outcome, there is still no
assurance.

Henceforth, we assume that the audit trail is complete and
accurate. When we say “the apparent outcome is correct,” we
mean the apparent outcome is the same that a full hand count
of the audit trail would show. “The apparent outcome is wrong”
means a full hand count would show a different outcome.

An election outcome can be checked by hand counting the en-
tire audit trail. This, however, is expensive and time-consuming,
and unnecessary unless the outcome is wrong. The goal of a sta-
tistical audit, which compares a hand count of a random sample
of batches of ballots to the audit trail for those batches, is to en-
sure that the outcome is correct without a full hand count—un-
less the outcome is wrong. If the outcome is wrong, a full hand
count is needed to set the record straight. A risk-limiting audit
has a minimum prespecified chance 1 of requiring a full hand
count whenever the apparent outcome is wrong.2 The risk is
the largest possible chance that there will not be a full hand
count when the outcome is wrong, no matter what caused the
discrepancies between the apparent outcome and the audit trail.
(We assume that ; otherwise, an audit would be unneces-
sary.)

In statistical language, a risk-limiting audit is a signif-
icance-level test of the null hypothesis “the outcome is
wrong” against the alternative hypothesis “the outcome is
right.” Commonly, tests are formulated so that the null hypoth-
esis that things are “good”; here, it is that things are “bad.” The
reason is that, in the Neyman–Pearson paradigm, the chance
of incorrectly rejecting the null hypothesis is controlled to be
at most . We want to control the chance that an incorrect
outcome will go undetected, i.e., the chance that there is not a
full hand count when there should be.

Not rejecting the null hypothesis entails a full hand count.
A good test simultaneously limits the chance of incorrectly re-
jecting the null hypothesis to at most and has high power. That
is, a good test has chance at least 1 of requiring a full hand
count when the outcome is wrong and is very likely to conclude
that the outcome is right, with a minimum of hand counting,
when the outcome is indeed right.

The outcome can be right even when there are some errors,
and audits of voter-marked paper ballots generally find errors
at a rate of a few tenths of a percent.3 For a test to have good

2See http://www.electionaudits.org/bp-risklimiting (last visited February 19,
2009).

3We have seen much better accuracy than this, for instance, in the audit of
the race in Marin county described here and in a November 2008 audit in Yolo
County, CA, we participated in. If something goes wrong—a ballot definition
error, miscalibrated scanner, bug, or fraud—errors can be much larger. Direct-
recording electronic voting machines (DREs) should be perfectly accurate, and
any errors in DRE results are cause for alarm and should be thoroughly inves-
tigated.
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TABLE I
SUMMARY OF THE TWO RACES AUDITED

power, it needs to have a large probability of rejecting the null
hypothesis even when some errors are observed, provided the
outcome of the race is right. The issue is whether, in light of the
errors found in the sample, there is still compelling statistical
evidence that the outcome of the race is correct.

Audits compare hand counts of a random sample of batches to
reported totals for those batches.4 The sampling design used in
this paper is sampling with probability proportional to an error
bound (PPEB) [7], [4]. Suppose the error in batch can be no
larger than . Let be the total of all the error
bounds. In PPEB, there are independent draws from the set
of batches. In each draw, the chance of selecting batch is

. This makes it more likely that batches that can conceal
more error will be audited.

Sampling proportional to an error bound is common in
financial auditing, where it is called dollar unit sampling or
monetary unit sampling (MUS) [8]. A standard problem in
financial auditing is to find an upper confidence bound for the
total overstatement of a set of accounts. Each account has a
“book value” in dollars; the real value—the value an audit
would reveal—might be lower. The overstatement is the book
value minus the real value. The overstatement can be no larger
than the book value. Thus, book value is an error bound and
MUS is PPEB.

Methods used to analyze MUS data generally convert the
overstatement to taint, which is the overstatement divided by
the book value. For instance, if an account with a book value of

1000 has an audited value of 900, the overstatement is 100
and the taint is i.e., ten cents per dollar.

Working with taint in PPEB samples has theoretical advan-
tages; see [9]–[12] and [4]. The expected taint of each PPEB
draw is the overall error in the population divided by the total
of the error bounds for the population. Moreover, the observed
taints are independent and identically distributed. Those fea-
tures make it straightforward to use the taint in a PPEB sample
to find an upper confidence bound on the total overstatement
error.

There is an extensive literature on confidence bounds for
overstatement from PPEB samples [8]. Apparently, [13] de-
veloped the first such confidence bound, based on nesting
binomial confidence bounds. That bound turns out to be quite
conservative in practice; the multinomial bound of [11] and
[12] is sharper (see Section V). The multinomial bound bins
the taint into pennies (zero cents per dollar, one cent per dollar,

, 100 cents per dollar) and uses the multinomial distribution
of the counts in each bin to make a confidence bound on the

4The design of the sample matters for the probability calculations and for
efficiency. Some methods, such as SAFE [6], use a simple random sample of
batches. Others use stratified simple random samples [1]–[3]. States, including
California and Minnesota, require drawing random samples stratified by county;
batches are ballots for a single precinct. Stratifying on the method of voting—by
mail, early, in-precinct, or provisional—can have logistical advantages.

population taint by inverting hypothesis tests. References [9]
and [10] develop a different improvement of the bound in [13],
and [4] shows how some common probability inequalities can
be used with the taint in a PPEB sample to test hypotheses about
the overall error. Those tests can be converted into confidence
bounds as well.

We present here a simplified variant of the multinomial
bound, the trinomial bound. It divides the taint into three bins
and constructs an upper confidence bound for the expected taint
by inverting a set of hypothesis tests. The acceptance regions
for the trinomial bound differ from those of the multinomial
bound.5 For the kind of data that typically arise in election
audits, computing the trinomial bound is straightforward.6 The
trinomial confidence bound for the taint can be small even
when some errors are observed. When that happens, the audit
stops short of a full hand count and the risk is still limited to at
most .

We used the trinomial bound to audit two November 2008
races: one in Santa Cruz County and one in Marin County,
California. Table I summarizes the election results. The Santa
Cruz County contest was for County Supervisor in the 1st Dis-
trict. The competitive candidates were John Leopold and Betty
Danner. According to the semiofficial results provided to us by
the Santa Cruz County Clerk’s office, Leopold won with votes
on 45% of the 26 655 ballots. Danner received the votes on 37%
of the ballots. The remaining ballots were undervoted, over-
voted, or had votes for minor candidates.7

The Marin County race was for Measure B, a county-wide
contest that required a simple majority. According to the semiof-
ficial results, provided to us by the Marin County Registrar of
Voters office, 121 295 ballots were cast in the race. Fifty-one
percent of the ballots recorded “yes” votes; 35% said “no.” The
remaining 14% had undervotes or overvotes.

Both audits were designed to limit the risk to . That
is, the chance of a full hand count was at least 75% if the out-
come was wrong. Both outcomes were confirmed without a full
hand count.

This paper is organized as follows. Section II reviews nota-
tion and points to other work for details. Section III develops
the trinomial confidence bound and a method for selecting the
bins and the sample size. Section IV explains how the trino-
mial bound was used to audit contests in Marin and Santa Cruz
counties and presents the audit results. Section V compares the

5The multinomial bound bases the hypothesis tests on “step-down sets,”
which partially order the set of possible outcomes. We order outcomes by
sample mean of the binned taints, which is more intuitive. Using the sample
mean to order outcomes for the 101-bin multinomial would be combinatorially
complex, but since the trinomial has only three bins, it turns out to be simple.

6The Kaplan–Markov bound [4] seems to be comparable but easier to com-
pute; there has been no extensive comparison so far.

7In calculating the confidence bound on the error, the audit took every ballot
into account, not just the ballots with votes.

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on December 14, 2009 at 13:13 from IEEE Xplore.  Restrictions apply. 



976 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 4, NO. 4, DECEMBER 2009

trinomial bound to the Stringer bound. Section VI presents con-
clusions.

II. NOTATION AND ASSUMPTIONS

We generally follow the notation in [2]–[4]. There are can-
didates; voters may vote for up to of them (the contest
has winners). There are batches of ballots, indexed by .
There are votes reported for candidate in batch . There
are actually votes cast for candidate in batch . The total
vote reported for candidate is , the sum of the
votes reported for candidate in the batches. The total actual
vote for candidate is . The set comprises the
indexes of the apparent winners, so . The set com-
prises the indexes of the apparent losers, so .

If and , then

(1)

The outcome of the election is right if, for every and
,

(2)

Define

(3)

That is the amount by which error in batch overstated the
margin between candidate and candidate , expressed as a
fraction of the reported margin between them.

If the outcome of the race is wrong, there is some pair
for which

(4)

Define

(5)

Reference [2] shows that a sufficient condition for the outcome
to be correct is

(6)

This condition is sufficient but not necessary; tightening the con-
dition could yield better tests.

We want to draw a statistical inference about from a
random sample of batches, making a bare minimum of assump-
tions about . We do assume that we have a bound on the
total number of ballots in batch . [2] shows that from such a
bound, we can deduce that

(7)

Let

(8)

We call the overstatement error in batch the overstate-
ment error, the maximum overstatement error in batch , and

the maximum overstatement error.
The sample is selected as follows. We draw times indepen-

dently (with replacement) from the set of batches. In each
draw, the probability of selecting batch is . This is called
a PPEB sample [7]; it is equivalent to monetary unit sampling
and dollar unit sampling in financial auditing [8].

This paper gives a method to compute an upper 1 con-
fidence bound for from a PPEB sample. One general
strategy for risk-limiting audits, described in [1]–[3], is to test
the hypothesis that the outcome is wrong sequentially. The au-
ditor draws a sample, then assesses whether there is sufficiently
strong evidence that the outcome is correct. If there is, the audit
stops. If there is not, the audit sample is enlarged and the new
evidence is assessed. Eventually, either there is strong evidence
that the outcome is right, or there will have been a full hand
count.

Stage of a sequential audit can be viewed as a test at signif-
icance level . In this paper, we focus on a single stage. The
hypothesis that the outcome is wrong is rejected at significance
level if . That might be the only stage of an audit that
takes a sample, then either stops or conducts a full hand count;
or it might be one of the stages of a multistage audit that could
expand the sample once or more before demanding a full hand
count.

The two audits we conducted using the new method were
single-stage audits. We drew an initial sample of batches and
calculated an upper 75% confidence bound for from the er-
rors the hand counts uncovered in those batches. If that upper
confidence bound had been greater than one, the election
officials would have conducted complete hand counts.

III. THE TRINOMIAL CONFIDENCE BOUND

Our method for constructing a 1 upper confidence bound
for is similar to the multinomial bound with clustering

[11], [12].
The taint of batch is the ratio of the actual overstatement

in batch to the maximum overstatement in batch

(9)

Now

(10)

Suppose we draw a PPEB sample of size . Let denote the
taint of the th draw. Then the expected value of is

(11)

Multiplication by transforms an upper 1 confidence bound
for into an upper 1 confidence bound for . See also
[4].
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Let . Define

(12)

For any ,8 is stochastically larger than (i.e.,
), so

(13)

Let

and let . Define . Then

(14)

Define

(15)

This is a random 3-vector. Its first component is the number of
observed taints that are no bigger than zero; its second is the
number of observed taints that are strictly positive but no bigger
than ; and its third is the number of observed taints that exceed

. It has a trinomial distribution with category probabilities .
We will use to find a set such that

(16)

That is, is a 1 confidence set for . Then

(17)

is the upper endpoint of a 1 upper confidence interval for
and hence for . It follows that is the upper end-

point of a 1 upper confidence interval for .
We construct by inverting hypothesis tests about .

We are ultimately interested in inferring that is not large,
so it makes sense to reject the hypothesis when

(18)

with

(19)

so that the test has level .
The test statistic orders the possible values of by the

sample mean of the values of from which was constructed.9
To find a confidence bound for , we invert the hypothesis

8Some papers on the multinomial bound in financial auditing suggest that
can be chosen after the data are collected. We have seen no proof that post hoc
selection of results in a valid confidence bound. We select before the data
are collected.

9This test statistic generally results in a different test from the “step-down
set” acceptance region used by [11], [12].

tests to find the confidence set of trinomial category prob-
abilities for which the hypothesis would not be rejected
if we observed . That set is

(20)

The corresponding confidence bound for is the largest
value of over

(21)

We now characterize the solution to the optimization problem
(21) in some useful cases. If , we certainly will
not be able to conclude that . The question is how much
smaller than 1 the “sample mean” must be to provide
strong evidence that . Because by assumption,

(22)

unless . If .
If , then the maximum in (21) is attained for

some for which .10 Suppose no observed
taints are greater than and taints are strictly positive.
Then and

(23)

Hence

(24)

The two-dimensional optimization problem (24) can be solved
using an ascent method or by searching. The R package “elec,”
available through CRAN, implements the computation.

A. Selecting and

No matter what values we select for and , the upper confi-
dence bound for will be conservative. However, if we choose

very small or very large, the audit will not be able to provide

10To see this, note that i) increases continuously and monotonically as
mass is moved either from to or from to and ii)
decreases monotonically and continuously as mass is moved either from to

or from to .
Suppose the maximum in (21) were attained for some , with

. By assumption, . Hence, either or
. Moving an infinitesimal amount mass from either of those components

to increases and decreases . Hence, cannot be
optimal.

11http://cran.r-project.org.
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TABLE II
SANTA CRUZ AUDIT DATA

strong evidence that , even when the outcome of the elec-
tion is correct. The confidence bound will be greater than
one, and the audit will progress—either to the next stage or to
a full hand count. On the other hand, setting large entails a
lot of auditing in the first stage, perhaps more than necessary to
confirm the outcome when the outcome is in fact correct.

We select and iteratively, using simulation to estimate
the power of the test against a “realistic” alternative hypothesis
under which there is error, but not enough error to alter the out-
come of the contest. In the alternative, the error is randomly dis-
tributed. Batches are tainted with probability , independently.
If batch is tainted, it has an overstatement of (up to) votes,
and the error is . The amount of taint that the

votes represent thus depends on the batch. For batches with
small , an overstatement of votes is a large taint, while for
batches with large , it is a small taint. Because the chance of
drawing batch is smaller for batches with small , it is less
likely that the sample will include the larger taints.

We adjust and iteratively until the chance is approxi-
mately 1 that the 1 trinomial confidence bound for is
less than one. The chance is estimated by simulation. The con-
fidence level is always at least 1 . Adjusting and only
affects the power.

In the simulations to select and for the Marin and Santa
Cruz County audits, which were conducted at level ,
we used votes, and . These
choices resulted in using for Santa Cruz
and for Marin.

IV. NOVEMBER 2008 AUDITS IN MARIN AND SANTA CRUZ

COUNTIES

In November 2008, we audited races in Marin and Santa
Cruz counties, using the trinomial bound,12 as follows. The
elections officials provided us the semiofficial results
and the number of ballots cast in each batch, which we took
as . From and , we calculated and . We
selected the number of draws as described in Section III-A.

12We audited a race in Yolo County, CA, using a different method.

The elections officials rolled dice to generate six-digit seeds,
which they sent to us.13 We used the seeds in the R implementa-
tion of the Mersenne Twister algorithm to make PPEB draws
to select batches for audit. The batches selected were counted
by hand by members of the staffs of the Santa Cruz County
Clerk’s office and the Marin County Registrar of Voters office.
They reported the hand-count results to us. We calculated con-
fidence bounds for from the observed discrepancies and
using the trinomial bound. In both cases, the 75% upper con-
fidence bounds were less than one, so no further counting was
required.

Section IV-A describes the Santa Cruz County audit in some
detail. Section IV-B summarizes the Marin County audit.

A. Santa Cruz County Supervisor, 1st District

There were 152 batches containing 0 to 855 ballots (median
66). The maximum potential error per batch ranged from
% to 49% of the margin. Some individual batches could hide

enough error to account for nearly half the margin. The distribu-
tion of the was heavily skewed to the right. The total pos-
sible margin overstatement across all batches was .

As described in Section III-A, we used and
in this audit. Since the draws are independent, they need not
yield distinct batches. The expected number of distinct batches
in 19 PPEB draws is

(25)

and the expected number of ballots in the sample is

(26)

A simple random sample would have required a much larger
audit to control the risk to the same level.14 The 19 draws pro-
duced 16 distinct batches containing 7105 ballots in all. Even
with PPEB, a high proportion of ballots needed to be audited,

13The Santa Cruz seed was 541 227; the Marin seed was 568 964.
14For example, the method in [1], [3] would have required a simple random

sample of batches, with the expectation of counting 13 017 ballots,
on the order of twice the effort required by the trinomial bound with PPEB
sampling.
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Fig. 1. The optimization problem over trinomial category probabilities for the
Santa Cruz audit. The heavy line is the set .
The parallel lines are the contours of 100 . The points to the right of the
heavy line compose the confidence set. The heavy dot is the category probability
vector with the largest value of among parameters in the confidence set.
For this contest, , so the audit can stop if the confidence set excludes

, corresponding to a contour line at 7.4 in the units of this
figure.

Fig. 2. The optimization problem over trinomial category probabilities for the
Marin audit. The heavy line is the set .
The parallel lines are contours of 100 . The confidence set consists of the
points to the right of the heavy line. The point is the category probability vector
in the confidence set with the largest value of . Because no errors were
found, the maximum lies on the boundary. For this contest, , so the
audit can stop if the confidence set excludes , corresponding
to a contour line at 10.2 in the units of this figure.

which is typical for small races. The sample size needed to con-
trol the risk does not depend directly on the size of the race.
Wide variations in the error bounds also contribute to the
need for a larger sample. Table II gives the audit results.

While analyzing the data, we learned that, although the audit
data included provisional ballots, the original totals on which we
had based the audit did not.15 This increased the number of bal-
lots in several audited batches and changed the margins in some
of them. The audit also showed a difference of one in the number
of ballots in some vote by mail (VBM) batches. We attribute
that difference to ballots that needed special treatment. To en-
sure that the audit remained statistically conservative, we treated
every change to the reported margins—including changes pro-
duced by provisional ballots—as error in the reported counts,
i.e., as error uncovered by the audit.16 The change in , the
number of ballots in a batch, affects . If is still an upper
bound on , the audit remains valid. Since the bound is ex-
tremely conservative (calculated by assuming that all the votes
in batch are actually for the loser) and there are so few provi-
sional ballots in all, it is implausible that in any batch.

The largest observed taint, 0.036, was a one-vote overstate-
ment in a tiny precinct. The largest absolute overstatement, four
votes, was in a much larger precinct; that taint was only 0.007.
“Error” was as large as eight votes in some batches, an atypi-
cally high rate for voter-marked optically scanned ballots. As far
as we can tell, this discrepancy was due to miscommunication,
not an error in the counts per se. This experience underscores
the importance of clear communication among the auditors and
election officials and their staff.

Apparently, the majority of the provisional ballots in the
sample were for the winner, so including them among the
ballots in the audited batches only strengthened the evidence
that the outcome was right. Despite treating changes caused by
including provisional ballots as errors, only two batches had
margin overstatements, both less than . (If any of the
three batches that were drawn twice had positive taint, the taint
of that batch would count twice.)

The trinomial observation was thus . The calcu-
lation of the trinomial confidence bound is illustrated in Fig. 1.
The upper confidence bound for is , which
yields the upper confidence bound

(27)

This allowed us to reject the hypothesis that the outcome was
wrong and stop the audit without a full manual count.17

B. Marin County Measure B

Table I summarizes the results of the race. In Marin, “decks” of
VBMballotsarerunthroughthescannerasagroup.Decksusually
contain about 250 ballots, sometimes from several precincts. To
collect all the ballots for a single precinct could require sorting
through several decks of ballots. This is laborious and prone to
error; for a race as large as Measure B, the effort is prohibitive.
For this reason, we used the decks as batches.

15Apparently 806 provisional ballots had been cast in the race in all. Among
the audited batches, precinct 1005 had 37; 1007 had 30; 1019 had 32; 1060 had
11; and 1101 had 39.

16It would also have been conservative to treat all the provisional ballots as
error, but we had no way to separate the votes for the provisional and original
ballots, so it was impossible to isolate the error in the original counts.

17On the basis of the trinomial bound, the -value of the hypothesis that the
outcome is wrong is 0.24.
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There was a complication. While the total number of ballots
in each deck is known, the number of votes for each candi-

date or position is not. (The vote tabulation software would not
generate such subtotals without extensive hand editing.) To cal-
culate a rigorous upper bound for decks, we made extremely
conservative assumptions: but . That is, to
find an upper bound on the margin overstatement in batch ,
we assumed that every ballot was reported as cast for the ap-
parent winner but that in reality every ballot was cast for the
reported loser. That leads to the bound . While this is
extremely conservative, the resulting sample size was still man-
ageable. The sample size was larger than it would have been
had we known and , but that was balanced by the labor
saved in not having to generate vote totals for the decks manu-
ally.18 The bound would have been effectively much more con-
servative if only a subset of the ballots in a deck included Mea-
sure B, but Measure B was county-wide.

There were 544 batches in all—189 batches of ballots cast in
precinct and 355 decks. Using (small) decks as batches reduces
the expected workload because the more batches there are, the
smaller the size of each. The number of draws required does not
depend directly on the number of batches in the population, so
dividing the ballots into many small batches usually leads to less
counting than dividing the population into fewer large batches.

The total error bound was . The distribution of error
bounds was roughly bell-shaped, with a spike at 0.025 because
many decks were about the same size (roughly 250 ballots each).
In this election, no batch could hold error of more than 3% of the
margin. In contrast, in the Santa Cruz race, some batches could
hold errors of up to 49% of the margin.

As described in Section III-A, we chose and
draws, which were expected to yield 13.8 distinct batches and

3424 ballots. The expected number of batches is close to the
number of draws because the error bounds are reasonably
uniform and no is very large, in contrast to the bounds in
Santa Cruz. With simple random sampling, the audit would have
required roughly 22 batches to control the risk to the same level

. The expected number of ballots to audit would have
been about 4900, 44% more than with PPEB and the trinomial
bound.

Once the decks to audit were selected, subtotals for those
decks were produced in order to have semiofficial figures to
audit. This involved replicating the database and generating a
special report for each audited precinct by manually deleting
every batch but one and generating a report for the remaining
batch, an arduous and error-prone procedure. Those subtotals
were then audited by hand-counting paper ballots. Table III lists
the reported votes in the 14 batches in the sample, which in-
cluded 3347 ballots. Remarkably, the audit found no errors. The
vector of trinomial counts was thus . The 75%
confidence bound for taint was , and the 75% con-
fidence bound for was

(28)

18If the vote tabulation software had been able to report and for each
deck, we would not have had to use such a conservative bound. Data export from
vote-tabulation systems is a serious bottleneck for election auditing.

TABLE III
MARIN AUDIT RESULTS

so the audit stopped without a full hand count. The corre-
sponding -value was about 0.22.

C. Late Problems in Marin County

We discovered in late July 2009, after this paper was ac-
cepted and long after the end of the canvass period, that while
Marin County had not found any discrepancies in any audited
batches, the totals they audited were not identical to the totals
on which we had based the audit calculations. In Marin County,
voters in precincts with fewer than 250 registered voters are
required to vote by mail, and VBM ballots are reported as if
they were in-person (IP) ballots. For larger precincts, the IP
results were final by November 7, but for precincts with fewer
than 250 registered voters, the “nominal” IP results were not
final until November 14: it takes longer for the VBM ballots
to be sorted and tallied.19 We based our audit calculations on
the IP results in the November 7 statement of vote, under-
standing—incorrectly—that those were final. They were final
for larger precincts but not for VBM-only precincts. Marin
County audited the November 14 statement of vote. Again, this
emphasizes the importance of clear communication between
auditors and elections officials and shows the value of pilot
studies.

V. COMPARISON WITH THE STRINGER BOUND

The Stringer bound [13] has long been used in financial au-
diting to find an upper confidence bound on the overstatement
of a group of accounts using a PPEB sample. It is gener-
ally—though not always—quite conservative, more so than
the multinomial bound [14]. If there are nonzero taints,

, the Stringer bound is

(29)

where is the exact upper confidence bound for
from datum when the observed value of is .

Table IV compares the 75% upper confidence bound for
based on the Stringer bound and the trinomial bound for the
Santa Cruz and Marin audit data. For the Santa Cruz data, the

19The VBM ballots for VBM-only precincts get special treatment: They are
segregated from the other VBM ballots and sorted by precinct.
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TABLE IV
75% UPPER CONFIDENCE BOUNDS FOR

Stringer bound is larger but still below one, so it would have
permitted the audit to stop. When all the taints are nonpositive,
as they are for the Marin data, the Stringer bound equals the
trinomial bound. The Kaplan–Markov bound [4] can be sharper,
especially if there are negative taints.

VI. CONCLUSION

We used a novel method to audit two November 2008 con-
tests in California: one in Santa Cruz County and one in Marin
County. The audits were conducted in a way that guaranteed at
least a 75% chance of a full hand count if the outcome of the
contest were wrong. Neither audit resulted in a full hand count.

The method we used, the trinomial bound, constructs an
upper confidence bound for the total overstatement error in
the race. For the apparent outcome of the race to be wrong, it
is necessary that . Hence, if the confidence bound for

is less than one, the audit can stop. If the confidence bound
is one or greater, there is a full manual count. This results in a
risk-limiting audit, i.e., an audit with a guaranteed minimum
chance of a full manual count whenever the apparent outcome
is wrong.

The trinomial bound relies on a sample drawn with proba-
bility proportional to a bound on the overstatement error in each
batch of ballots (PPEB sampling), a technique long used in fi-
nancial auditing but new to election auditing [7]. There are other
ways of using PPEB samples to draw inferences about [4],
[15]. The trinomial bound constructs a confidence set for the
category probabilities for a trinomial variable from the taints
observed in the PPEB sample, then projects and scales that con-
fidence set to find a confidence bound for .

The audit in Marin county posed unusual logistic challenges
because ballots were not sorted by precinct. We used batches
defined by “decks” of ballots that were fed through scanners as
a group. The inability of the vote tabulation software to produce
batch subtotals made it necessary then to use extremely con-
servative bounds on the possible error in each batch: twice the
number of ballots.

Election audits face considerable logistic challenges. The
time and effort of counting votes by hand is one. The lack of
good “data plumbing” is another. Current vote tabulation sys-
tems do not seem to export data in formats that are convenient
for audits, necessitating hours of error-prone hand editing.
Elections officials and legislators interested in promoting post-
election audits could help by demanding this functionality.
Embracing standard data formats would also help considerably.
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