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Abstract

R (Version 3.5.1 patched) has an issue with its random sampling functionality.

R generates random integers between 1 and m by multiplying random floats by

m, taking the floor, and adding 1 to the result. Well-known quantization effects

in this approach result in a non-uniform distribution on {1, . . . ,m}. The differ-

ence, which depends on m, can be substantial. Because the sample function in

R relies on generating random integers, random sampling in R is biased. There

is an easy fix: construct random integers directly from random bits, rather

than multiplying a random float by m. That is the strategy taken in Python’s

numpy.random.randint() function, and recommended by the authors of the

Mersenne Twister algorithm, among others. Example source code in Python

is available at https://github.com/statlab/cryptorandom/blob/master/

cryptorandom/cryptorandom.py (see functions getrandbits() and randbelow from randbits()).

A textbook way to generate a random integer on {1, . . . ,m} is to start with

X ∼ U [0, 1) and define Y ≡ 1 + bmXc. If X is truly uniform on [0, 1), Y is then

uniform on {1, . . . ,m}. But if X has a discrete distribution derived by scaling a pseu-

dorandom w-bit integer (typically w = 32) or floating-point number, the resulting
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distribution is, in general, not uniformly distributed on {1, . . . ,m} even if the un-

derlying pseudorandom number generator (PRNG) is perfect. Theorem 1 illustrates

the problem.

Theorem 1 (Knuth [1997]). Suppose X is uniformly distributed on w-bit binary

fractions, and let Ym ≡ 1 + bmXc. Let p+(m) = max1≤k≤m Pr{Ym = k} and

p−(m) = min1≤k≤m Pr{Ym = k}. There exists m < 2w such that, to first order,

p+(m)/p−(m) = 1 +m2−w+1.

A better way to generate random elements of {1, . . . ,m} is to use pseudorandom

bits directly, avoiding floating-point representation, multiplication, and the floor op-

erator. Integers between 0 and m− 1 can be represented with µ(m) ≡ dlog2(m− 1)e

bits. To generate a pseudorandom integer between 1 and m, first generate µ(m)

pseudorandom bits (for instance, by taking the most significant µ(m) bits from the

PRNG output, if w ≥ µ(m), or by concatenating successive outputs of the PRNG

and taking the first µ(m) bits of the result, if w < µ(m)). Cast the result as a

binary integer M . If M > m− 1, discard it and draw another µ(m) bits; otherwise,

return M+1.1 Unless m = 2µ(m), this procedure is expected to discard some random

draws—up to almost half the draws if m = 2p+1 for some integer p. But if the input

bits are IID Bernoulli(1/2), the output will be uniformly distributed on {1, . . . ,m}.

This is how the Python function numpy.random.randint() (Version 1.14) generates

pseudorandom integers.2

The algorithm that R (Version 3.5.1 patched) [R Core Team, 2018] uses to gen-

erate random integers in R unif index() (in RNG.c) has the issue pointed out in

1See Knuth [1997, p.114]. This is also the approach recommended by the authors of the
Mersenne Twister. See http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/efaq.html, last
accessed 18 September 2018.

2However, Python’s built-in random.choice() (Versions 2.7 through 3.6) does something else
biased: it finds the closest integer to mX, where X is a binary fraction between 0 and 1.
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Theorem 1 in a more complicated form, because R uses a pseudorandom float at an

intermediate step, rather than multiplying a binary fraction by m. The way the float

is constructed depends on m. Because sample relies on random integers, it inherits

the problem.

When m is small, R uses unif rand to generate pseudorandom floating-point

numbers X on [0, 1) starting from a 32-bit random integer generated from the

Mersenne Twister algorithm [Matsumoto and Nishimura, 1998].3 The range of

unif rand contains (at most) 232 values, which are approximately equi-spaced (but

for the vagaries of converting a binary number into a floating-point number [Gold-

berg, 1991], which R does using floating-point multiplication by 2.3283064365386963e-

10).

When m > 231, R unif index() calls ru instead of unif rand.4 ru combines two

floating-point numbers, R1 and R2, each generated from a 32-bit integer, to produce

the floating-point number X, as follows: the first float is multiplied by U = 225,

added to the second float, and the result is divided by U :

X =
bUR1c+R2

U
.

The relevant code is in RNG.c.

The cardinality of the range of ru is certainly not larger than 264. The range of

ru is unevenly spaced on [0, 1) because of how floating-point representation works.

The inhomogeneity can make the probability that X ∈ [x, x+ δ) ⊂ [0, 1) vary widely

3Luke Tierney pointed out that the seeding algorithm used in R is neither the one originally
proposed by Matsumoto and Nishimura [1998], which is known to have issues, nor their updated
2002 version that fixes these issues. Instead, R uses its own initialization method invented by Brian
Ripley.

4A different function, sample2, is called when m > 107 and k < m/2. sample2 uses the same
method to generate pseudorandom integers.
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with x.

For the way R unif index() generates random integers, the non-uniformity of the

probabilities of {1, . . . ,m} is largest when m is just below 231. The upper bound on

the ratio of selection probabilities approaches 2 as m approaches 231, about 2 billion.

For m close to 1 million, the upper bound is about 1.0004.

We recommend that the R developers replace the algorithm in R unif index()

with the algorithm based on generating a random bit string large enough to repre-

sent m and discarding integers that are larger than m. The resulting code would be

simpler and more accurate. Other routines that generate random integers using the

multiply-and-floor method (int) unif rand() * n, for instance, walker ProbSampleReplace()

in random.c, should also be updated to use an unbiased integer generator (e.g., to

call the new version of R unif index()).
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