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1 Vote-Tabulation Audits

Post-election vote-tabulation audits compare hand counts of votes in a collec-

tion of groups (clusters) of paper records (“voter-verified paper audit trail,”

VVPAT) to reported machine counts of the votes in the same clusters. Vote-

tabulation audits can serve a variety of roles, including process monitoring,

quality improvement, fraud deterrence, and bolstering public confidence. All of

these raise statistical issues.

This note focuses on audits that check whether the machine-count outcome
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is correct. The outcome is the set of winners, not the numerical vote totals.

The machine-count outcome is correct if it agrees with the outcome that a full

hand count of the paper audit trail would show. Hand counts can have errors,

but many jurisdictions define the correct outcome to be the outcome a hand

count shows. Moreover, when the hand count of a cluster of ballots disagrees

with the machine count, jurisdictions typically repeat the hand count until they

are satisfied that the problem is with the machine count, not the hand count.

Generally the only legally acceptable way to prove that a machine count

outcome is wrong—and to repair it—is to count the entire audit trail by hand.

An audit that has a pre-specified chance of requiring a full hand count if the

machine-count outcome is wrong—no matter what caused the outcome to be

wrong—is called a risk-limiting audit . The risk is the maximum chance that

there won’t be a full hand count when the machine-count outcome is wrong.

2 The Role of Statistics in Risk-Limiting Audits

Statistics lets us reduce the amount of counting when the machine-count out-

come is right, while ensuring that there is still a big chance of counting the

entire audit trail if that outcome is wrong. Risk-limiting audits can be couched

as hypothesis tests. The null hypothesis is that the machine-count outcome is

incorrect. To reject the null is to conclude that the machine-count outcome is

correct. A type I error occurs if we conclude that the machine-count outcome

is correct when a full hand count would show that it is wrong. The significance
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level is the risk.

It is natural and convenient to test the null hypothesis sequentially: Draw a

random sample of clusters and audit them. If the sample gives strong evidence

that the null hypothesis is false, stop auditing. Otherwise, expand the sample

and evaluate the evidence again. Eventually, either we have counted all the

clusters by hand and thus know the correct outcome, or we stopped auditing

without a full hand count. We can limit the risk to level α by designing the

audit so that the chance it stops short of a full hand count is at most α in every

scenario in which the machine-count outcome is wrong.

The amount of hand counting needed to confirm that a correct outcome

is indeed correct depends on the sampling design, the margin, the number of

ballots cast, the number and nature of the differences the audit finds, and on the

number of votes for each candidate in each of the clusters from which the sample

is drawn. Clusters typically correspond to precincts or to precincts divided by

mode of voting (e.g., votes cast in person versus votes cast by mail). We shall

see that using smaller clusters can dramatically reduce the amount of hand

counting when the machine-count outcome is right.

3 Heuristic Examples

3.1 Jelly Beans

We have 100 4-ounce bags of various flavors of jelly beans. Some bags have

assorted flavors, some only a single flavor. Each 4oz bag contains 100 jelly beans,
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so there are 10,000 in all. I love coconut jelly beans, and want to estimate how

many there are in the 100 bags. The canonical flavor assay for jellybeans is

destructive tasting , so the more we test, the fewer are left to share.1 Consider

two approaches.

1. Pour the 100 bags into a large pot and stir well. Then draw 100 beans

without looking. Estimate the total number of coconut jelly beans to be

the number of coconut jelly beans in the sample, times 100.

2. Select one of the 4oz bags at random. Estimate the total number of

coconut jelly beans to be the number of coconut jelly beans in that bag

of 100, times 100.

Both estimates are statistically unbiased, but the first has much lower vari-

ability. Mixing disperses the coconut jelly beans pretty evenly. The sample

is likely to contain coconut jelly beans in roughly the same proportion as the

100 bags do overall, so multiplying the number in the sample by 100 gives a

reasonably reliable estimate of the total.

In contrast, a single bag of 100 selected at random could contain only coconut

jelly beans (if any of the bags has only coconut) or no coconut jelly beans (if

any of the bags has none). Since the bags can have quite different proportions

of coconut jelly beans, 100 beans selected the second way can be quite likely

to contain coconut jelly beans in a proportion rather different from the overall

proportion, and multiplying the number of coconut beans in that bag by 100

1Yes, I will share my jelly beans with you. After I pick out the coconut ones. And the

banana. And . . . .
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could have a large chance of being far from the total number of coconut jelly

beans among the 10,000.

To get a reliable estimate by counting the coconut jelly beans in randomly

selected bags, we would need to test quite a few bags (i.e., quite a few clusters),

not just one. It’s more efficient to mix the beans before selecting 4oz. Then 4oz

suffices to get a reasonably reliable estimate.

Conversely, suppose that a sample of 100 beans drawn the first way contains

no coconut jelly beans. We would then have 95% confidence that there are

no more than 293 coconut beans among the 10,000. In contrast, if a sample

drawn the second way contains no coconut jelly beans, we would only have 95%

confidence that there are no more than 9,500 coconut jelly beans among the

10,000. To have 95% confidence that there are no more than 293 we would have

to test at least 63 of the 100 bags, not just one bag: 63 times as many jelly

beans as a simple random sample requires.

3.2 How salty is the stock?

We have 100 12-ounce cans of stock, of a variety of brands, styles, and types:

chicken, beef, vegetable, low-sodium, regular, etc. We want to know how much

salt there is in all 1,200 ounces of stock as a whole. The salt assay ruins the

portion of the stock that is tested: The more we test, the less there is to eat.

Consider two approaches:

1. Open all the cans, pour the contents into a large pot, stir well, and remove

a tablespoon of the mix. Determine the amount of salt in that tablespoon,
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multiply by the total number of tablespoons in the 100 cans (1T = 0.5oz,

so the total number of tablespoons in the 100 cans is 12×100×2 = 2,400T).

2. Select a can at random, determine the amount of salt in that can, and

multiply by 100.

Both estimates are statistically unbiased, but the first estimate has much

lower variability: That single tablespoon is extremely likely to contain salt in

roughly the same concentration the 100 cans have on the whole.

In contrast, a can selected the second way can be quite likely to contain salt

in a concentration rather different from the 1,200 ounces of stock as a whole,

unless all the cans have nearly identical concentrations of salt.

For the first approach, we can get a reliable estimate of the total salt from a

single tablespoon (0.5oz) of stock. But for the second approach, even 12 ounces

of stock is not enough to get a reliable estimate. The first approach gives a

more reliable result at lower cost: It spoils less stock.

To get a reliable estimate by sampling cans, we would need to assay quite a

few cans selected at random. A single can is not enough, even though it contains

24 tablespoons of stock—far more than we need in the first approach. It’s more

efficient and cheaper to mix the stock before selecting the sample.

4 Connection to election auditing

A vote-tabulation error that causes the machine-count margin to appear larger

than the true margin is like a coconut jelly bean or a fixed quantity of salt. A
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precinct or other cluster of ballots is like a bag of jelly beans or a can of stock.

Drawing the audit sample is like selecting a scoop or a bag of jelly beans or a

tablespoon or can of stock.

Counting ballots by hand has a cost: The more we have to count, the greater

the cost. Hence, we want to count as few ballots as possible as long as we can

still determine whether the electoral outcome is correct—whether the number of

errors is insufficient to account for the margin of victory. Similarly, testing the

flavor of jelly beans or assaying the salt in the soup also has a cost. (Although

I’d volunteer to determine the flavor of jelly beans, gratis.)

There are also costs for reporting votes in small clusters and organizing

ballots so that those clusters can be retrieved, just as there are costs involved in

opening all the bags of jelly beans and mixing them together, and in opening all

the cans of soup and mixing them together. Reporting votes for small clusters

of ballots can also reduce voter privacy.

In the food examples, the first approach is like auditing individual ballots

or small clusters. All the ballots are mixed together well. A relatively small

sample can give a reliable estimate of the difference between the machine counts

and what a full hand count would show for the entire contest.

In the food examples, the second approach is like auditing using precincts or

other large clusters of ballots. Many errors that increased the apparent margin

could be concentrated in a small number of clusters, because there is no mixing

across clusters. A single cluster drawn using the second approach doesn’t tell

us much about the overall rate of vote-tabulation errors, no matter how large
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the cluster is (within reason). To compensate for the lack of mixing across

clusters of ballots, we need to audit many clusters, just like we need to count

the coconut jelly beans in many bags or assay many cans of soup if we don’t

mix their contents across clusters before drawing the sample.

5 Numerical Examples

Suppose we have 50,000 ballots in all, 500 ballots cast in each of 100 precincts.

We will draw a random sample of 500 ballots to tally by hand to check against

machine subtotals. Consider the three ways of selecting 500 ballots: (i) drawing

a precinct at random, (ii) drawing 10 clusters of 50 ballots at random without

replacement, and (iii) drawing 500 individual ballots at random without replace-

ment (a simple random sample). Method (i) gives the least information about

the whole contest; method (iii) gives the most, as we shall see. The smaller the

clusters are, the harder it is to hide error from the random sample.

Suppose that for 1,000 (i.e., 2%) of the ballots, the machine interpreted the

vote to be for the machine-count winner but a manual count would show a vote

for the apparent loser. What is the chance that the hand count of the votes in

the sample finds any of those 1,000 ballots? For method (iii), the chance does

not depend on how the misinterpreted ballots are spread across precincts: It is

about 99.996%, no matter what. But for methods (i) and (ii), the chance does

depend on how many incorrectly interpreted ballots there are in each cluster.

For simplicity, assume that when a precinct is divided into 10 clusters, the
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misinterpreted ballots randomly selected 10 randomly selected simple random sample
by precinct precinct of 500 clusters of 50 of 500

10 in every precinct 100% 100% 99.996%
10 in 98 precincts, 99% ∼100% 99.996%

20 in 1 precinct
20 in 50 precincts 50% 99.9% 99.996%
250 in 4 precincts 4% 33.6% 99.996%
500 in 2 precincts 2% 18.4% 99.996%

Table 1: Chance that a sample of 500 ballots contains at least one misinter-
preted ballot in various scenarios.
There are 100 precincts containing 500 ballots each, and 1,000 of the 50,000
ballots (2%) are misinterpreted. Column 1: the way in which the 1,000
misinterpreted ballots are spread across precincts. Columns 2–4: the way
in which the sample is drawn. Column 2: 1 precinct of 500 ballots drawn
at random. Column 3: 10 clusters of 50 ballots drawn at random without
replacement. Column 4: a simple random sample of 500 ballots. When a
precinct is subdivided into 10 clusters, the number of misinterpreted ballots
in those clusters is assumed to be equal.

number of misinterpreted ballots in each of those 10 clusters is the same. For

instance, if the precinct has 20 misinterpreted ballots, each of the 10 clusters

has 2 misinterpreted ballots.

Table 1 gives the resulting probabilities. They vary widely. In the case

most favorable to precinct-based sampling, hand counting a single randomly

selected precinct is guaranteed to find a misinterpreted ballot (10, in fact). But

the chance falls quickly as the misinterpreted ballots are concentrated into fewer

precincts. In the scenario least favorable to precinct-based sampling, the chance

is only 2% for a randomly selected precinct and 18.4% for 10 randomly selected

clusters of 50—but remains 99.996% for simple random sampling.

If misinterpretations are caused by equipment failures in precincts, that

might concentrate errors in only a few precincts. If misinterpretations occur

because pollworkers accidentally provided voters pens with the wrong color or
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type of ink, that might concentrate errors in only a few precincts. If a fraudster

tries to manipulate the outcome, he or she might target the ballots in only a few

precincts, either to avoid detection or for logistical simplicity. In these three hy-

potheticals, if the sample is drawn by selecting an entire precinct it could easily

be squeaky clean. But with the same counting effort, the chance of finding at

least one error if the 500 ballots are drawn as a simple random sample remains

extremely high, 99.996%, whether the misinterpreted ballots are concentrated

in only a few precincts or spread throughout all 100.

Even when the sample does find some misinterpreted ballots, the percentage

of such ballots in the sample can be much lower than the percentage in the

contest as a whole. As before, suppose that for 1,000 (i.e., 2%) of the ballots, the

machine interpreted the vote to be for the machine-count winner but a manual

count would show them to be for the apparent loser. What is the chance that

the percentage of misinterpreted ballots in the sample is at least 1%?

Table 2 gives the answers for the same set of scenarios. In the situation

most favorable to precinct-based sampling, hand counting a single randomly

selected precinct is guaranteed to reveal that at least 1% of the ballots were

misinterpreted (in fact, it will show that 2% were). But the chance falls quickly

as the misinterpreted ballots are concentrated into fewer precincts. In the case

least favorable to precinct-based sampling, the chance is only 2% for a randomly

selected precinct and 18.4% for 10 randomly selected clusters of 50—but remains

97.2% for simple random sampling. Using smaller clusters increases the chance

that the percentage of misinterpreted ballots in the sample will be close to the
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misinterpreted ballots randomly selected 10 randomly selected simple random sample
by precinct precinct of 500 clusters of 50 of 500

10 in every precinct 100% 100% 97.2%
10 in 98 precincts, 99% ∼100% 97.2%

20 in 1 precinct
20 in 50 precincts 50% 62.4% 97.2%
250 in 4 precincts 4% 5.7% 97.2%
500 in 2 precincts 2% 18.4% 97.2%

Table 2: Chance that the percentage of misinterpreted ballots in a sample of
500 is at least 1% in various scenarios
There are 100 precincts containing 500 ballots each, and 1,000 of the 50,000
ballots (2%) are misinterpreted. Column 1: the way in which the 1,000
misinterpreted ballots are spread across precincts. Columns 2–4: the way
in which the sample is drawn. Column 2: 1 precinct of 500 ballots drawn
at random. Column 3: 10 clusters of 50 ballots drawn at random without
replacement. Column 4: a simple random sample of 500 ballots. When a
precinct is subdivided into 10 clusters, the number of misinterpreted ballots
in those clusters is assumed to be equal.

percentage of misinterpreted ballots in the contest as a whole. Smaller clusters

yield more reliable estimates.

Suppose the hand counts and machine counts match perfectly for a sample

drawn in one of the three ways—no errors are observed. What could we conclude

about the percentage of misinterpreted ballots in the contest as a whole, at 95%

confidence? Table 3 gives the answers. For the same counting effort, the simple

random sample tells us far more about the rate of misinterpreted ballots in the

contest as a whole.

6 Discussion

Audits that have a guaranteed minimum chance of leading to a full hand

count whenever the machine-count outcome is incorrect—thereby repairing the
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randomly selected 10 randomly selected simple random sample
precinct of 500 clusters of 50 of 500

95.0% 25.7% 0.58%

Table 3: Upper 95% confidence bounds for the number of misinterpreted ballots
for three ways of drawing 500 ballots at random, when the sample contains no
misinterpreted ballots.
There are 100 precincts containing 500 ballots each. Columns 1–3: the way
in which the sample is drawn. Column 1: 1 precinct of 500 ballots is drawn
at random. Column 2: 10 clusters of 50 ballots drawn at random without
replacement. Column 3: a simple random sample of 500 ballots is drawn.
The bounds are obtained by inverting hypergeometric tests.

outcome—are called risk-limiting audits. The risk is the largest chance that the

audit will not proceed to a full hand count when the machine-count outcome

is incorrect. Risk-limiting audits can be implemented as sequential tests of the

null hypothesis that the machine-count outcome is incorrect. The significance

level is the risk.

I introduced risk-limiting audits in 2007 and conducted six field-pilots of

risk-limiting audits in 2008 and 2009. In April 2010, the Board of Directors

of the ASA endorsed risk-limiting audits and called for risk-limiting audits to

be conducted for all Federal and statewide contests and a sample of smaller

contests [10]. While 22 states have laws that require some kind of post-election

vote-tabulation audit2, none currently requires risk-limiting audits. California

bill AB 2023, which recently passed the California State Assembly by a unan-

imous bipartisan vote, calls for an official pilot of risk-limiting audits in 2011.

The ASA, California Common Cause, Verified Voting Foundation, and Citizens

for Election Integrity Minnesota have endorsed AB 2023. AB 2023 will be heard

by the California State Senate Committee on Elections, Reapportionment and

2Verified Voting, http://www.verifiedvoting.org/, last accessed 30 May 2010.
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Constitutional Amendments in June 2010.

Reducing cluster size can dramatically reduce the hand counting required

for risk-limiting audits. For instance, a 2009 risk-limiting audit in Yolo County,

CA, audited a cluster sample of 1,437 ballots to attain a risk limit of 10%.

Clusters were precincts, split by mode of voting (in person versus by mail). A

simple random sample of just 6 ballots—about 240 times fewer—would have

sufficed instead, if no errors were found [8].

There are tradeoffs: Using smaller clusters requires vote tabulation systems

and procedures that report subtotals for smaller clusters, and it requires elec-

tions officials to be able to locate and retrieve the paper trail for those clusters.

There is also a tradeoff between cluster size and voter privacy. If a group of

voters can be linked to a cluster of ballots with similar voting patterns, one can

determine how those voters voted.

The biggest impediment to efficient risk-limiting audits is the inability of

current commercial vote tabulation systems to report the machine interpreta-

tion of small clusters of ballots or individual ballots. The next generation of

vote tabulation systems should be designed with auditing in mind.
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