Spatio-temporal dependence:

a blessing and a curse for
computation and inference
(illustrated by compositional data modeling)
(and with an introduction to NIMBLE)

Christopher Paciorek UC Berkeley Statistics

Joint work with:
The PalEON project team (http://paleonproject.org)
The NIMBLE development team (http://r-nimble.org)

PalEON Project

Goal: Improve the predictive capacity of terrestrial ecosystem models

Friedlingstein et al. 2006 J. Climate
12.0 -4 | ul A | 1 | | T G |

|

10.0
8.0
6.0
4.0
2.0
0.0

-2

_40 -

—-6.0

-
—
-
-
—
-
-

. L) 3= . (4

“This large variation among carbon-cycle
models ... has been called ‘uncertainty’.

7 7

| prefer to call it ‘ignorance’.
- Prentice (2013) Grantham Institute

14

|

N

Land Uptake (GtClyr)

L1l 1 1

N

. | | | | | 1 | I | .
1850 1900 1950 2000 2050 2100
Critical issue: model parameterization and representation of decadal- to

centennial-scale processes are poorly constrained by data
Approach: use historical and fossil data to estimate past vegetation and climate
and use this information for model initialization, assessment, and improvement

Spatio-temporal dependence: a blessing
and a curse for computation and inference

Fossil Pollen Data

Berry Pond, W Massachusetts

o &
Yo &

QN
> .(\Q’ & . Ny o5 @
R fb fb\ lofb b European settlement

Onset of Little Ice Age

l_'_|llllllllll

20I 20 40 20 20 40 20 1500 60

Spatio-temporal dependence: a blessing
and a curse for computation and inference

Settlement-era Land Survey Data

Survey grid in Wisconsin ‘Surveyor notes

Do P18
A aite. Loteridsn Bty
v

Enir Rloiss #hus oritr. diven of Banti ‘

O S ot B Pk

7

4 Ot Phaisidini AL T T, U
/ =

D350 B me sy Al Batreg S8,

£
Gaas Lo /»a“»..g B B

g e BT fon fi Badin Coidane

Chso Lo Arat s nitling Y-S 4 B

foos St - PORDIEPSSCRE N [

Phpirrinse --‘a}&- S G
Faiirn IV 32w el
otk hieil pensiak o Mlach
;al G tiidin acnais Bonie K

A W 3rg i daidy

. &

PRI SR P T D
=L

Raw oak tree proportions
(on a grid in the western
portion and in irregular
township areas in the
eastern portion)

Spatio-temporal dependence: a blessing
and a curse for computation and inference

Outline

Application 1: Spatial smoothing of compositional data
— Setting: Multivariate data, high-dimensional quantities, non-conjugate
models
— A hierarchical multinomial probit model with CAR spatial process
— Data augmentation
— How much smoothness (in space)?
— Computational implications
Computational tools
— Overview of current software
— Introduction to NIMBLE
Application 2: Temporal prediction of biomass from compositional data
— How much smoothness (in time)?

— A hierarchical stick-breaking compositional model with Generalized Pareto
nonstationary temporal smoothing

— Default MCMC and computational challenges
— Customized MCMC using NIMBLE

Concluding thoughts

Application 1: Spatial smoothing of compositional data

e Multivariate: ~20 taxa (species)
* Sum-to-one constraint on
proportions
e 8km by 8 km grid:
e ~10,000 grid points
* 1.3 million trees (> 20 cm diameter)
in total

e ~125 trees per grid cell

Spatio-temporal dependence: a blessing
and a curse for computation and inference

Application 1: Should we model spatial dependence?

Yes:

No:

We want to estimate composition at all locations.

We want to smooth over noise at observed locations.

We are interested in joint inference for multiple locations, so we need
to account for posterior covariance.

We would need to model the spatial dependence, with the resulting
computational implications.

Application 1: Should we model multivariate dependence?

Yes:

No:

Taxa do show correlated abundance (taxa have similarities in their
ecological characteristics).

If joint inference on multiple tree species is desired, need multivariate
correlation structure to properly characterize given our actual
knowledge.

Dependence varies by location (nonstationarity)

* E.g., hemlock/beech positively correlated in general, but beech
not present in some locations where hemlock appears (different
western range limits)

 Would require more complex model

Locations with data have data for all taxa

* Imputation is only spatial not multivariate

 With no measurement error and separable covariance, kriging
prediction for a taxon depends only on data from that taxon at
other locations

* Inference not focused on multi-taxon functionals

Application 1: Spatial smoothing of compositional data

* Multivariate: ~20 taxa (species)
* Sum-to-one constraint on
proportions
* 8km by 8 km grid:
e ~10,000 grid points
e 1.3 million trees (> 20 cm diameter)
in total

e ~125 trees per grid cell

Model overview:

 Multinomial likelihood (no over-dispersion)

* One spatial process per taxon
 Sum-to-one constraint based on a multinomial probit specification
 Otherwise, no multivariate structure

* Spatial process hyperparameters

Spatio-temporal dependence: a blessing
and a curse for computation and inference

Application 1: Standard Spatial Multinomial Logit Model

A spatial multinomial logit model:
Y; ~ Multl(nz,é’(sz))
exp(gp(si))
v S; —
P S explgn(s:)
gp(') ~ GP(%)

for location i and taxon p.

Computational implications:
* No conjugacy!
e Can’tintegrate analytically over the latent processes
 How propose good values of each g process?

Consider McCulloch and Rossi (1994) multinomial extension of Albert and
Chib (1993) data augmentation (DA) trick for probit regression.

Application 1: Spatial Multinomial Probit Model
with Data Augmentation

A spatial multinomial probit model:
Yij = D 1t Wijp — max Wi ik

k
wigp ~ N(gp(si),1)
gp(') ~ GP(@?)

for location i, tree j, and taxon p.

Computational implications:
* Data augmentation version allows conjugate updates of each g
process
e But! Introduce new level in model — higher dimensional and with
potential for cross-level dependence to impede MCMC performance

Application 1: How much smoothness?

Application is based on 8 km grid, so CAR style (i.e., Markov random field)
models a natural choice.
How smooth spatially?

e First order (simple neighborhood) CAR models: not smooth spatially.

Yi; — P it Wijp =— MaAX Wik

k
Wijp ~ N(gp(si),1)
g ~ N(O, 0}29@_) (ICAR)

e Second order (thin-plate spline) CAR models: very smooth spatially.
e Lindgren et al (2011) SPDE approximation to Matern-based Gaussian
process: range parameter and limited control over differentiability

parameter.

Application 1: Smoothness and computation

* Sparse precision matrices
* Very computationally efficient for conjugate updates
* Without conjugacy not clear how to generate good proposals for
entire spatial field for a taxon, so computational efficiency of
limited relevance
* Location-specific updates would mix poorly when there is
strong spatial dependence
e Simple CAR models may show reasonable mixing for spatial
process values with fixed hyperparameters because of lesser
spatial smoothness
* Cross-level dependence from separate updates of latent data values,
spatial process values, spatial hyperparameters
* Updates of spatial process and hyperparameters not directly
informed by data

Application 1: MCMC design
Yis; — P 1t Wijp =— MaAX Wik

k
Wijp ~ N(gp(si),1)
9p N(O,Of,Q_) (ICAR)

* Cross-level dependence from separate updates of latent data values,
spatial process values, spatial hyperparameters
* Adequate performance required joint (cross-level) updates of {g,, 0 }:
* Metropolis proposal for o, with conjugate proposal for g,
* Equivalent to marginalizing over g, but avoids correlated truncated
normal density for w

Application 1: MCMC implementation
Yis; — P 1t Wijp =— MaAX Wik

k
Wijp ~ N(gp(si),1)
9p N(O,Of,Q_) (ICAR)

Overall MCMC written in R

Truncated normal computations done in C++ via Rcpp (can also use

openMP for parallelization)

Joint {g,, 0.} samples done in R using sparse matrix computations with

spam package (which uses Fortran)

Even with customization, MCMC takes order of two weeks

Computation pre-dates NIMBLE but NIMBLE designed to allow users to

set up customized MCMC sampling for components of models

* E.g., thejoint {g, o,} sampling could be coded as a user-defined

sampler in NIMBLE (and NIMBLE provides such a sampler for some
such situations)

Ash
0.16 0.18 0.20 0.22

Birch
0.18

0.20

0.16

Application 1: MCMC performance

©
C\! —
o 8 |
o
R
5 gK-
o
23 g
m S R
o o
Al
o To)
O
o
T T T T T T T T T T T T T T T T T
50 150 250 0 50 150 250 0 50 150 250
iteration iteration iteration
Q] _
@ _ o _
o _ o
£ o 3 -
G o O o
< i
o‘ 1 o
N _
o ©
<L
T T T T T T T T T T T T s] T T T T
50 150 250 0 50 150 250 0 50 150 250
iteration iteration iteration

Trace plots for taxon-specific hyperparameters

Application 1: Results

Model selection:
* First order CAR and Lindgren GP approximation have similar

performance but GP approximation has anomalies at the

spatial boundaries.
» Second order (thin plate spline) CAR too smooth.

Prediction:
http://gandalf.berkeley.edu:3838/paciorek/setVegComp

Spatio-temporal dependence: a blessing 17
and a curse for computation and inference

Bayesian software landscape

Hand-coded algorithms:
e R, Python: fast to develop and easy to share, but slow computation
e C++, Rcpp: slower to develop and harder to share, but fast computation
e Julia: fast to develop and fast computationally but less widely used

Black-box MCMC engines:
* JAGS: single variable samplers with a focus on conjugate samplers
e Stan: Hamiltonian MC, variational Bayes
* PyMCMC3: flexible sampler choice, Hamiltonian MC, variational Bayes

NIMBLE:
e Customizable MCMC and other algorithms plus a system for programming
algorithms for hierarchical models in R

Application 1: Software needs

* Exploit sparsity

* Flexibility in choosing samplers for parts of the model

* Joint sampling of spatially-dependent process values

e Customize joint sampling of hyperparameters and spatial process
to improve mixing

* Use compiled code for computational bottlenecks

Notes:

 NIMBLE can’t do all of this yet (no sparse matrices right now), but
designed for such flexibility

 Would be interesting to compare performance of my customized
sampling to Stan’s HMC

Existing software

Model Algorithm
: : ()
C===)
Oa020

e.g., BUGS (WinBUGS, OpenBUGS, JAGS), INLA, Stan,
various R packages

NIMBLE: The Goal

Model Algorithm language

+

Divorcing Model Specification
from Algorithm

MCMC Flavor 1

@ @ @ MCMC Flavor 2
Data cloning
@ @ @ Particle Filter
MCEM

Quadrature Importance Sampler

Your new method

Maximum likelihood

NIMBLE’s goals

— Retaining BUGS compatibility
— Providing a variety of standard algorithms

— Allowing developers to add new algorithms
(including modular combination of algorithms)

— Allowing users to operate within R

— Providing speed via compilation to C++, with R
wrappers

NIMBLE System Summary

R objects + R under the hood

statistical model
(BUGS code)
+

algorithm
(nimbleFunction)

R objects + C++ under the hood
<> We generate C++ code,

<> compile and load it,
<> provide interface object.

NIMBLE

1. Model specification

BUGS language = R/C++ model object

2. Algorithm library

MCMC, Particle Filter/Sequential MC, etc.

3. Programming algorithms

NIMBLE programming language within R = R/C++
algorithm object

Spatio-temporal dependence: a blessing
and a curse for computation and inference

25

The Success of R

John M. Chambers

PROGRAMMING

WITH DATA

A Guide to the S Language
C !

Spatio-temporal dependence: a blessing
and a curse for computation and inference

26

NIMBLE: Programming with Models

You give NIMBLE:

You get this:

littersCode <- nimbleCode({
for(jin 1:G) {
for(l'in 1:N) {
rfi, j1 ~ dbin(pli, j], n[i, jI);
pli, j] ~ dbeta(alj], bljl);
}
mulj] <- a[jl/(alj] + b[j]);
theta[j] <- 1.0/(a[j] + b[j]);
a[j] ~ dgamma(1, 0.001);
b[j] ~ dgamma(1, 0.001); })

> littersModelSa[1] <- 5 # set values in model

> simulate(littersModel, ‘p') # simulate from prior

> p_deps <- littersModelSgetDependencies(‘p’) # model structure
> calculate(littersModel, p_deps) # calculate probability density

> getLogProb(pumpModel, r')

NIMBLE also extends BUGS: multiple parameterizations, named parameters, and
user-defined distributions and functions.

User Experience: Specializing an Algorithm to a Model

littersModelCode <- modelCode({
for(jin 1:G) {
for(lin 1:N) {
rfi, j1 ~ dbin(pli, j1, nli, j);
pli, j1 ~ dbeta(a[j], b[il);
}
mul(j] <- a[jl/(a[j] + b[jl);
thetalj] <- 1.0/(a[j] + b[j]);
afj] ~ dgamma(1, 0.001);
b[j] ~ dgamma(1, 0.001);
})

> littersMCMCconf <- configureMCMC(littersModel)

> littersMCMCconfSprintSamplers()

[...snip...]

[3] RW sampler; targetNode: b[1], adaptive: TRUE, adaptinterval: 200, scale: 1
[4] RW sampler; targetNode: b[2], adaptive: TRUE, adaptinterval: 200, scale: 1
[5] conjugate_beta sampler; targetNode: p[1, 1], dependents_dbin: r[1, 1]

[6] conjugate _beta sampler; targetNode: p[1, 2], dependents_dbin: r[1, 2]
[...snip...]

> littersMCMCconfSaddSampler(‘a[1]’, ‘slice’, list(adaptinterval = 100))

> littersMCMCconfSaddSampler(‘a[2]’, ‘slice’, list(adaptinterval = 100))

> littersMCMCconfSaddMonitors(‘theta’)

> littersMCMC <- buildMCMC(littersMCMCspec)

> littersMCMC_Cpp <- compileNimble(littersMCMC, project = littersModel)

> littersMCMC_CppSrun(20000)

NIMBLE

1. Model specification

BUGS language = R/C++ model object

2. Algorithm library

MCMC, Particle Filter/Sequential MC, MCEM, etc.

3. Programming algorithms

NIMBLE programming language within R = R/C++
algorithm object

Spatio-temporal dependence: a blessing
and a curse for computation and inference

29

NIMBLE’s algorithm library

— MCMC samplers:

* Conjugate, adaptive Metropolis, adaptive blocked
Metropolis, slice, elliptical slice sampler, particle
MCMC, specialized samplers for particular distributions
(Dirichlet, CAR)

* Flexible choice of sampler for each parameter
» User-specified blocks of parameters

— Sequential Monte Carlo (particle filters)

e Various flavors

— MCEM
— Write your own

NIMBLE

1. Model specification

BUGS language = R/C++ model object

2. Algorithm library

MCMC, Particle Filter/Sequential MC, etc.

3. Algorithm specification

NIMBLE programming language within R = R/C++
algorithm object

Spatio-temporal dependence: a blessing
and a curse for computation and inference

31

NIMBLE: Programming With Models

We want:
* High-level processing (model structure) in R

* Low-level processing in C++

NIMBLE: Programming With Models

sampler_myRW <- nimbleFunction(

setup = function(model, mvSaved, targetNode, scale) { |
calcNodes <- modelSgetDependencies(targetNode)

1

run = function() {
model_Ip_initial <- calculate(model, calcNodes)
proposal <- rnorm(1, model[[targetNode]], scale) 2 kin(?ls of
model[[targetNode]] <<- proposal __functions
model _|p proposed <- calculate(model, calcNodes)
log MH_ratio <- model_lp_proposed - model |p initial

if(decide(log_ MH_ratio)) jump <- TRUE
else jump <- FALSE
.... Various bookkeeping operations ... # })

NIMBLE: Programming With Models

sampler_myRW <- nimbleFunction(

setup = function(model, mvSaved, targetNode, scale) { [query model
calcNodes <- modelSgetDependencies(targetNode) ™ structure

b ONCE

run = function() {
model_lp_initial <- calculate(model, calcNodes)
proposal <- rnorm(1, model[[targetNode]], scale)
model[[targetNode]] <<- proposal
model Ip_proposed <- calculate(model, calcNodes)
log MH_ratio <- model_lp_proposed - model |p initial

if(decide(log_ MH_ratio)) jump <- TRUE
else jump <- FALSE
.... Various bookkeeping operations ... # })

Spatio-temporal dependence: a blessing

. . 34
and a curse for computation and inference

NIMBLE: Programming With Models

sampler_myRW <- nimbleFunction(

setup = function(model, mvSaved, targetNode, scale) {
calcNodes <- modelSgetDependencies(targetNode)
§
run = function() {
model_Ip_initial <- calculate(model, calcNodes)

proposal <- rnorm(1, model[[targetNode]], scale) the actual
model[[targetNode]] <<- proposal (generic)
model Ip_proposed <- calculate(model, calcNodes) algorithm

—

log MH_ratio <- model _|p_proposed - model |p initial

if(decide(log_ MH_ratio)) jump <- TRUE
else jump <- FALSE
.... Various bookkeeping operations ... # })

—

Spatio-temporal dependence: a blessing

. . 35
and a curse for computation and inference

The NIMBLE compiler (run code)

Feature summary:

* R-like matrix algebra (using Eigen library)

* R-like indexing (e.g. X[1:5,])

* Use of model variables and nodes

 Model calculate (logProb) and simulate functions
* Sequential integer iteration

e |f-then-else, do-while

* Access to much of Rmath.h (e.g. distributions)
* Automatic R interface / wrapper

* Call out to your own C/C++ or back to R

* Many improvements / extensions planned

NIMBLE: What can | program?

Your own distribution for use in a model
Your own function for use in a model

Your own MCMC sampler for a variable in a
model

A new MCMC sampling algorithm for general
use

A new algorithm for hierarchical models

An algorithm that composes other existing
algorithms (e.g., MCMC-SMC combinations)

NIMBLE: What can | program?

Your own distribution for use in a model
Your own function for use in a model

Your own MCMC sampler for a variable in a
model

A new MCMC sampling algorithm for general
use

A new algorithm for hierarchical models

An algorithm that composes other existing
algorithms (e.g., MCMC-SMC combinations)

Spatio-temporal dependence: a blessing

. . 38
and a curse for computation and inference

Status of NIMBLE and Next Steps

* First release was June 2014 with regular releases since. Lots to do:
— Improve the user interface and speed up compilation
— Refinement/extension of the NIMBLE programming language
* e.g., automatic differentiation, parallelization, sparse matrices
— Additional algorithms written in NIMBLE DSL

* e.g., normalizing constant calculations, Laplace approximations,
HMC and other samplers

* Bayesian nonparametrics with Claudia Wehrhahn Cortes and Abel
Rodriguez (UCSC)

* Interested?
— Announcements: nimble-announce Google site
— User support/discussion: nimble-users Google site
— Write an algorithm using NIMBLE!

— Help with development of NIMBLE: email nimble.stats@gmail.com or
see github.com/nimble-dev

Application 2: Predicting biomass from compositional data

Calibration: at settlement time we have biomass estimates (based on survey data and a

spatial model) and pollen composition (from sediment cores) _
“ Biomass estimates at ponds

w 4 P N
2 CEE%’ d Som
T
;
o o

20

5
' @
Berry Pond, W Massachusetts &@&‘ Qc}\z &,,(‘
& o &
@«“0.@ & e & SO S & &
2R o e ©) 3 European settlement
) i I
1900 F
1800 ‘
1700 r p
1400
1300 \
200
1100
Onset of Little Ice Age
1000
- e e

Spatio-temporal dependence: a blessing

. . 40
and a curse for computation and inference

Application 2: Calibration model

Pollen proportion for each taxon determined by
transformation of a flexible (spline) function of biomass

* shapel and shape2 parameters of beta distribution are

splines of biomass

* Primary calibration parameters are spline coefficients
Multinomial likelihood for pollen counts given modeled
proportions
Fit in NIMBLE (could be fit in various other packages)

Application 2: Calibration model fit

PINUSX prairie
[ee] Te}
o 7 =)
<
o © _| Q o
°© o o
o} S o
3 < | g °
5 © S o
o o o
] S
o _| <
© T T T T T T 1 e
0 20 40 60 80 100 140
biomass biomass
QUERCUS other herbs
<t
o ®
Te}
el
[]
<] ® o hd
a © Qe o a
S o ° ; ° (=
o 7] o
5 ° | g8 5
S A _|%esERe 5
o o g ° o
g @ N QB QI
o _| J" PR A e
©C T T T T T T 1
0 20 40 60 80 100 140
biomass biomass

Mean and variability of modeled pollen proportions across ponds vary with biomass

Spatio-temporal dependence: a blessing 47
and a curse for computation and inference

Application 2: Prediction Model

9

Bk s Bax

taxon k

()
/

P

time t

Application 2: Prediction Model

for(t in L:nTimes) pollen likelihood

Y[t, 1] ~ dbetabin(alphal[t, 1], alpha2[t, 1], n[t])
for(k in 2:(nTaxa-1)) {
Y[t, k] ~ dbetabin(alphallt, k], alpha2[t, k], n[t]-sum(Y]t, 1:(k-1)])

for (k in 1:nTaxa))
for(tin 1:nTimes) {

alphallt, k] <- exp(Zb[t, 1:nKnots] %*% betal[1:nKnots, k])

alpha2[t, k] <- exp(Zb[t, 1:nKnots] %*% beta2[1:nKnots, k]) latent

S—

} predictor
for(tin 1:nTimes)

Zb[t, 1:nKnots] <- bspline(b[t], knots[1:nKnots])

—

for(tin 2:nTimes) . .
b[t] ~ dnorm(b[t-1]), sd = sigma) biomass evolution

sigma ~ dunif(0, 10) # Gelman (2006)
b[1] ~ dunif(0, 400) } hyperpriors

Spatio-temporal dependence: a blessing

. . 44
and a curse for computation and inference

Application 2: Biomass prediction at one site

Calibration sites and prediction site (red) Biomass over time
B S _|
— forest
o _|woodland
(o0}
a o _
© O
5
s 3 -
< - \/k grassland
O p—
| | | | | |
-8000 -6000 -4000 -2000 0 2000

year

Key ecological question: how does biomass (carbon storage) evolve over time?
Statistical question: how to model temporal process? Smoothness?

* Discrete first-order autoregressive (i.e., CAR) model is not smooth

» Discrete second-order autoregressive (i.e., thin plate spline) is very smooth
* Nonstationarity?

Application 2: Generalized Pareto / Trend filtering

Discrete autoregressive model is a model (prior) for temporal contrasts (in

biomass)
Nonstationarity could be achieved by setting some contrasts to zero
* Reversible jump
e L1 prior (Laplace / double exponential) a la the Lasso
* Generalized Pareto extends the Laplace prior based on extensive work
on properties of shrinkage priors (Carvalho et al (2010), Tansey et al.
(2016), Taddy (2013))
* Looks like Laplace prior but with fatter tails
Could consider first-order (piecewise constant model), second-order
(piecewise linear), third-order (piecewise quadratic) contrasts

Application 2: Generalized Pareto / Trend filtering

* Marginalized model (third order)
bt ~ GGHP&I’(Sbt_l — Sbt_g -+ bt_g, w, O')

e Sparsity-inducing prior and modeling of contrasts produces very
complicated and often very strong temporal dependence
* Hard to make good MCMC proposals

* Model (third order) with data augmentation
by ~ N(3bi—1 —3b—o + bi_3,w;)
wy ~ Exp(A;/2)
)\t ~ Ga(% J)

* Now have normal prior for b,.; but no conjugacy so still hard to find

good proposals
* And we have additional hierarchical levels that can impede MCMC

mixing

Application 2: MCMC performance

Mixing with data augmentation using Mixing in marginalized model using
default NIMBLE MCMC HMC in Stan
[JW“ I
M I T | ,“ A
S &- S |
) — chain 1
gf —— chain 2
280 480 680 880 1 0‘00 (‘J 2(‘)0 480 6(‘)0 880 1 0‘00
MCMC iteration MCMC iteration

(recall non-differentiable spike at zero from
generalized Pareto)

Spatio-temporal dependence: a blessing

. . 48
and a curse for computation and inference

Application 2: MCMC performance (2)

Stan-based posterior correlations of biomass process values

chain 1 5 chain 2
10 7 H. - ﬁ'i
- u-ﬂh
IR VR
< —ne l"=. i I'I :!:
- 00 !1- "'II' d qFI.l'I
T)

1
|

e s | S

.mt!ll.“ | | 1--. .

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.0

Spatio-temporal dependence: a blessing
and a curse for computation and inference

1.0

0.5

— 0.0

49

Application 2: Customized block sampling in NIMBLE

1. Use data augmentation with normal approximation to likelihood [y|b] at
each point to provide approximately conjugate proposals for biomass
process

* Simple to approximate with mode and curvature of likelihood

2. Joint updates for wy, A¢, bi—i:141 : bivariate random walk for
hyperparameters and approximate conjugate update for biomass process
values

* Joint updating of hyperparameters and process addresses cross-level
dependency

* Joint updating of multiple biomass values addresses temporal
dependency

* Local neighborhood updates for biomass reduce computation and
avoid high-dimensional approximate conjugacy

Sampling done in NIMBLE using a user-defined sampler, combined with
standard samplers for other model parameters.

Application 2: Customized MCMC performance

Mixing with data augmentation using customized NIMBLE MCMC

m —1
o P - =
(4y] |
2 7 - ®
| o
§ S - ©
T £ S °
5 0 8 - <
R o ©
© < N
& — o
S _
5 O
< 91 o — S
1 T T T 1 1 T T T] 00 04 08
0 2000 4000 0 2000 4000
MCMC iteration MCMC iteration

Spatio-temporal dependence: a blessing
and a curse for computation and inference

51

PlIOMass

Application 2: Initial results

® pointwise MLE

I
—-8000

I
—6000

I I
-4000 -2000

year

I
0

Concluding thoughts

The spatio(-temporal) dependence we need for
smoothing/prediction can greatly affect algorithm
performance.

Blocked sampling can address dependence but good
proposals can be hard to find, particularly with:

— non-conjugate models and

— dependence across model levels.

Even with algorithm advances, computational

limitations still greatly limit our ability to fit rich model
structures.

NIMBLE provides a platform for

— customizing algorithms for particular models and

— developing general-purpose algorithms for hierarchical
models.

PalEON Acknowledgements

Pollen-biomass Collaborators: Ann Raiho, Jason McLachlan
(Notre Dame Biology)

PalEON investigators: Jason McLachlan (Notre Dame, Pl),
Mike Dietze (Boston U.), Andrew Finley (Michigan State), Amy
Hessl (West Virginia), Phil Higuera (Idaho), Mevin Hooten
(USGS/Colorado State), Steve Jackson (USGS/Arizona), Dave
Moore (Arizona), Neil Pederson (Harvard Forest), Jack
Williams (Wisconsin), Jun Zhu (Wisconsin)

NSF Macrosystems Program

NIMBLE Acknowledgements

NIMBLE development team:

* Perry de Valpine (PI) UC Berkeley Environmental Science,
Policy and Management (ESPM)

e Daniel Turek Williams College
* Nick Michaud UC Berkeley Statistics and ESPM
* Fritz Obermeyer UC Berkeley Statistics and ESPM

* Duncan Temple Lang UC Davis Statistics
* and various development team alumni

NIMBLE can be installed from CRAN in the usual way for an R

package, and a full website with link to the User Manual is at
http://r-nimble.org.

References

Albert, James H., and Siddhartha Chib. "Bayesian analysis of binary and polychotomous response
data." Journal of the American statistical Association 88.422 (1993): 669-679.

Carvalho, Carlos M., Nicholas G. Polson, and James G. Scott. "The horseshoe estimator for sparse
signals." Biometrika 97.2 (2010): 465-480.

de Valpine, Perry, et al. "Programming with models: writing statistical algorithms for general model
structures with NIMBLE." Journal of Computational and Graphical Statistics 26.2 (2017): 403-413.

Lindgren, Finn, Havard Rue, and Johan Lindstrom. "An explicit link between Gaussian fields and
Gaussian Markov random fields: the stochastic partial differential equation approach." Journal of
the Royal Statistical Society: Series B (Statistical Methodology) 73.4 (2011): 423-498.

McCulloch, Robert, and Peter E. Rossi. "An exact likelihood analysis of the multinomial probit
model." Journal of Econometrics 64.1 (1994): 207-240.

Taddy, Matt. "Multinomial inverse regression for text analysis." Journal of the American Statistical
Association 108.503 (2013): 755-770.

Tansey, Wesley, Athey, A., Reinhart, A., and Scott, J. G. "Multiscale spatial density smoothing: an
application to large-scale radiological survey and anomaly detection." Journal of the American
Statistical Association just-accepted (2017).

