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ABSTRACT

Nonstationary covariance models have received much recent attention in

spatial statistics. Higdon et al. (1999) presented a nonstationary

covariance function produced by convolving kernel functions. The

evolution of the kernel functions in space produces nonstationary

covariance. Using Gaussian kernels produces a closed form nonstationary

covariance similar in form to the squared exponential (Gaussian)

stationary covariance function. These covariance functions, when used in

Gaussian processes, produce infinitely differentiable sample paths. I

extend the function of Higdon et al. (1999) to produce a class of closed

form nonstationary covariance functions that share the sample path

differentiability properties of the stationary covariance functions upon

which they are based. The class includes a Matérn nonstationary

covariance function, which shares the sample path differentiability

properties of the stationary Matérn covariance.
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GAUSSIAN PROCESS DISTRIBUTION

• Infinite-dimensional joint distribution for Z(x), x ∈ X :

❖ Example: Z(·) a spatial field, X = <P

❖ Z(·) ∼ GP(µ(·), C(·, ·))

• Finite-dimensional marginals are normal

• Types of covariance functions, C(xi, xj):

❖ stationary, isotropic

❖ stationary, anisotropic

❖ nonstationary
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STATIONARY CORRELATION FUNCTIONS

Squared exponential: R(τ ) = exp
(

−
(

τ

κ

)2
)
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• Sample paths of GPs with this correlation are infinitely differentiable

• Replacing the power of 2 by 1 in the equation gives the exponential

correlation, with no sample path derivatives
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DEGREE OF SMOOTHING
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NONSTATIONARY CORRELATION IN CLIMATOLOGY
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A NONSTATIONARY COVARIANCE FUNCTION

• Higdon, Swall, and Kern (1999)

RNS(xi, xj) = c
∫

<P kxi
(u)kxj

(u)du

• kx are kernel functions centered at x

• Guaranteed positive definite

• Normal kernels:

kxi
(u) ∝ exp

(

−(u − xi)
T Σ−1

i (u − xi)
)

RNS(xi, xj) = c exp

(

−(xi − xj)
T

(

Σi+Σj

2

)−1

(xi − xj)

)

• Z(·) ∼ GP(µ, σ2RNS(·, ·)) is a nonstationary Gaussian process
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NONSTATIONARY GPS IN 1D
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NONSTATIONARY GPS IN 2D
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GENERALIZING THE NONSTATIONARY COVARIANCE

• Squared exponential form:

Stationary ⇒ Nonstationary

exp
(

−
(

τ

κ

)2
)

⇒ c exp

(

−(xi − xj)
T

(

Σi+Σj

2

)−1

(xi − xj)

)

Infinitely-differentiable sample paths

• ‘Distance measures’

τ2
xi,xj

= (xi − xj)
T (xi − xj)

τ∗2
xi,xj

= (xi − xj)
T Σ−1(xi − xj)

Qxi,xj
= (xi − xj)

T

(

Σi + Σj

2

)−1

(xi − xj)

• Can we replace τ 2 with Qxi,xj
in other stationary correlation

functions?
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MATÉRN STATIONARY CORRELATION FUNCTION

Correlation functions Sample functions

Matérn form:R(τ ) = 1
Γ(ν)2ν−1
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• Sample path differentiability controlled by ν

• Matérn form has asymptotic advantages (Stein 1999) 11



GENERALIZED KERNEL METHOD

• Theorem (Paciorek 2003): if R(τ ) is positive definite for
<p, p = 1,2, . . ., then

RNS(xi, xj) =
|Σi|

1
4 |Σj |
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is positive definite for <p, p = 1,2, . . .

• Matérn form:

RNS(xi, xj) =
|Σi|

1
4 |Σj |
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√
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√
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• Summary of theorems (Paciorek 2003) on smoothness properties of
sample paths:

❖ Smoothness is based on original stationary correlation function

❖ Provided kernel matrices vary sufficiently smoothly in covariate
space
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SMOOTHLY-VARYING KERNEL MATRICES

• Goals:

❖ Define multiple kernel matrices, Σx

(the cov. matrices of the Gaussian kernels, kx)

❖ Smoothly-varying in covariate space

❖ Positive definite

• Use spectral decomposition (Σx = ΓT
x ΛxΓx)

❖ Γx parameterized as first eigenvector plus successive orthogonal

vectors in reduced-dimension subspaces

❖ stationary GP priors on unnormalized eigenvector coordinates

(ax, bx) and on logarithm of eigenvalues (λx,1, λx,2)

❖ gets unwieldy and highly-parameterized for large P

(a,b)
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CONCLUSIONS

I propose a new class of nonstationary covariance functions, generalizing
the nonstationary covariance function of Higdon et al. (1999). The class
includes a Matérn nonstationary covariance function, which shares the
desirable sample path differentiability properties of the stationary Matérn
covariance, in which the number of derivatives of sample paths from
Gaussian processes with the specified Matérn covariance is controlled by
a parameter.

These nonstationary covariance functions can be used in various models
that rely on Gaussian processes. These include kriging, Bayesian spatial
models, and nonparameteric regression modelling. Ongoing work
includes approaches for simplifying the parameterization of the kernels
that define the nonstationary covariance. The goal is to make the fitting
(using either MCMC or other faster methods) simpler and less
computationally intensive.
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