Integrating remote sensing and ground monitoring data to improve estimation of $PM_{2.5}$ concentrations for chronic health studies

Chris Paciorek and Yang Liu Departments of Biostatistics and Environmental Health Harvard School of Public Health

May 8, 2007

• • = • • = •

Outline

- 2 Calibrating MISR AOD
- Calibrating GOES AOD
- 4 Statistical prediction in space and time

• • = • • = •

Exposure estimation for $PM_{2.5}$

- For studies of the chronic health effects of PM, estimating spatial heterogeneity is critical.
- Satellite retrievals of AOD may be able to help estimate concentrations at locations far from monitors, particularly in suburban and rural areas.
- But, current retrievals estimate total column aerosol and correlations between AOD and PM are low when considered at high temporal and spatial resolution.
- Statistical modeling can calibrate AOD to ground-level PM and account for the error induced in using AOD as a proxy.
- Our goal: integrate AOD and ground-level PM measurements to estimate ground-level PM on a regular 4 km grid every month, 2000-2006.
- Intended use is as a data product for use in various studies of chronic health effects.

AOD measurements

- MISR:
 - once per day
 - nominal 17.6 km resolution, a given location is measured every 4-7 days
 - multi-angle, narrow band, multispectral
- MODIS:
 - once per day
 - nominal 10 km resolution, a given location is measured every 1-2 days
 - narrow band, multispectral
- GOES:
 - every half hour during daylight
 - nominal 4 km resolution
 - broadband

< 同 > < 三 > < 三 > -

Introduction Calibrating MISR AOD Calibrating GOES AOD

Correspondence of AOD and PM

э

Chris Paciorek Applications of Environmental Remote Sensing

Correspondence of MISR AOD and PM

Cross-sectional (top row) and longitudinal (bottom row) associations for days and locations with many co-occurring observations.

Statistical calibration of AOD to PM

- Goal: use co-occurring observations of PM and AOD to build a statistical model that accounts for factors that prevent a close relationship of AOD and PM.
- Liu et al. (2005) built a regression model (on the log scale) relating PM to MISR AOD, modified by location, season, RH and PBL.
- Here we extend the approach using more flexible nonparametric regression terms:

 $log AOD_{it} = g(s_i) + f(t) + f(log PBL_{it}) + f(RH_{it}) + PM_{it}\beta_1 + \epsilon_{it}$ $log AOD_{it}^* = log AOD_{it} - \hat{g}(s_i) - \hat{f}(t) - \hat{f}(log PBL_{it}) - \hat{f}(RH_{it})$

• After calibration,

$$\log AOD_{it}^* \approx \beta_0 + \beta_1 PM_{it} + \epsilon_{it}$$

ヘロト ヘ河ト ヘヨト ヘヨト

Fitted calibration model

 $\log AOD_{it} = g(s_i) + f(t) + f(\log PBL_{it}) + f(RH_{it}) + PM_{it}\beta_1 + \epsilon_{it}$

AOD-PM association after calibration

Chris Paciorek

Applications of Environmental Remote Sensing 9

Statistical calibration of GOES AOD

• For each season: summer, spring, fall:

$$log AOD_{it} = g(s_i) + PM_{it}\beta_1 + \epsilon_{it}$$

$$log AOD_{it}^* = log AOD_{it} - \hat{g}(s_i)$$

• After calibration,

$$\log AOD_{it}^* \approx \beta_0 + \beta_1 PM_{it} + \epsilon_{it}$$

• No apparent association of AOD and PM in winter.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Non-winter GOES AOD-PM association after calibration

Chris Paciorek

Applications of Environmental Remote Sensing 11

Calibration lessons

- Calibration and temporal averaging both improve associations, which appear reasonably linear at the monthly and yearly resolutions.
- Temporal averaging without calibration shows little improvement.
- GOES AOD in winter appears not to be useful, but negative values and days with only a single retrieval are helpful.

・ 同 ト ・ 三 ト ・ 三 ト

Statistical modeling

- Core idea is a latent spatio-temporal PM process at the daily or monthly scale.
- Treat calibrated AOD and ground measurements as noisy measurements of the process at fixed locations and times.
- Calibrated AOD is considered as an observation, not a regression term, because of missing observations and lack of coverage.
- A Bayesian hierarchical model can integrate the various sources of information and provide for smoothing in space-time to predict at locations and times without any data.
- The model needs to be constructed to take advantage of sparse matrix manipulations to be feasible at the scale of interest (2000-2006, 4 km resolution).
- Model should deal with irregular spatial and temporal sampling and possibility that missing retrievals are correlated with PM.

The basic statistical model

Next steps and open issues

• Calibration:

- Consider different quality thresholds for GOES retrievals.
- Make use of CMAQ vertical profiles in calibration.
- Fit the model and make predictions for a subset of the full domain
 - How much improvement is provided by AOD over and above ground measurements, weather variables, and land use type variables?
 - Should the model be fit at the daily level and estimated PM averaged to the month or fit at the monthly level after averaging the observations?

(4月) (4日) (4日)

Some perspectives

- Needs of epidemiologists:
 - High spatial (and in some cases spatio-temporal) resolution for exposure assessment and linkage with health outcomes
 - Long-term records for cohort studies
 - Calibration with ground-level measurements to understand and account for error in exposure estimation
 - PM component information
- Opportunities for collaboration of remote sensing scientists and statisticians to improve exposure assessment
 - use of retrievals of varying quality in a statistical model
 - empirical calibration of level 1 retrievals to ground-level PM
 - can more information be extracted by relating level 1 directly to observables of interest, building retrieval algorithm assumptions within an empirical statistical framework?