Extensible software for
hierarchical modeling:
using the NIMBLE platform to
explore models and algorithms

Perry de Valpine (PI)
Daniel Turek
Christopher Paciorek
Ras Bodik

Duncan Temple Lang

UC Berkeley Environmental Science, Policy and Managem’t
UC Berkeley Statistics and ESPM

UC Berkeley Statistics
UC Berkeley Electrical Engineering and Computer Science

UC Davis Statistics

Background and Goals

Software for fitting Bayesian models has opened their
use to a wide variety of communities

Most software for fitting hierarchical models is either
model-specific or algorithm-specific

Software is often a black box and hard to extend

Our goal is to divorce model specification from
algorithm, while

— Retaining BUGS compatibility

— Providing a variety of standard algorithms

— Allowing developers to add new algorithms (including
modular combination of algorithms)

— Allowing users to operate within R
— Providing speed via compilation to C++, with R wrappers

Divorcing Model Specification
from Algorithm

MCMC Flavor 1

@ @ @ MCMC Flavor 2
Data cloning
@ @ @ Particle Filter
MCEM

Quadrature Importance Sampler

Your new method

Unscented KF

NIMBLE Design

- High-level processing in R (as much as possible)

* Process BUGS language for declaring models (with some extensions)

* Process model structure (node dependencies, conjugate relationships,
etc.)

* Generate and customize algorithm specifications

* Generate model-specific C++ code to be compiled on the fly

* Provide matching implementation in R for prototyping / debugging /
testing

* Some high-level algorithm control possible in R (adapting tuning
parameters, monitoring convergence, high levels of iteration)

* Low-level processing in C++

* Model and algorithm computations

* “Run-time” parameters allow some modification of behavior without
recompiling

User Experience: Processing a BUGS Model

littersModelCode <- quote({ @
for(j in 1:G) { @

for(lin 1:N) { @
rfi, 1 ~ dbin(pli, j], ni, j]); e
pli, j] ~ dbeta(a[j], b[jl);

}

mul(j] <- a[jl/(alj] + b[jl); @)

thetalj] <- 1.0/(a[j] + b[j]); 4

a[j] ~ dgamma(1, 0.001); [] mum

b[j] ~ dgamma(1, 0.001);

Parse and process BUGS code (R

parse()).

Collect information in model object.
Use igraph plot method.

v

> littersModel <- BUGSmodel(littersModelCode, setupData = list(N = 16, G = 2, n = data))
% Provides variables and functions for
algorithms to use.

NIMBLE: extensible software for
hierarchical models

User Experience: Specializing an Algorithm to a Mode

littersModelCode <- quote({ updater.RW.Normal <- nimbleFunction(
for(jin 1:G) {
for(l'in 1:N) { origValue <- model[[targetNode]]
r[i, j] ~ dbin(pli, j], n[i, j1); propValue <- rnorm(1, mean = origValue, sd = scale)
pl[i, j] ~ dbeta(alj], b[j]); logProbCurrent <- getLogProb(model, calcNodes)
} model[[targetNode]] <- probValue
mulj] <- a[jl/(a[j] + b[j]); logProbProposed <- calculate(model, calcNodes)
thetal[j] <- 1.0/(a[j] + b[j]); logProbProposal <- dnorm(propValue, mean = origValue, sd = scale, log
afj] ~ dgamma(1, 0.001); = TRUE)
b[j] ~ dgamma(1, 0.001);
)

> littersMCMCspec <- MCMCspec(littersModel, adaptinterval = 100)

> getUpdaters(littersMCMCspec)

Updater for nodes: beta

type: RW

rwinfo (list):

-->'scale' (numeric): 0.1

-->'adapt' (logical): TRUE

-->"'propCoV' (character): identity

[...snip...]

> addUpdater(littersMCMCspec, updater(c(‘a’, ‘b’), ‘Rwblock’, rwinfo = list(scale = 0.1))
> addMonitor(littersMCMCspec, ‘a’); addMonitor(littersMCMCspec, ‘b’)
> littersMCMC <- buildMCMC(littersMCMCspec)

> littersMCMC_Cpp <- compileToCpp(littersModel, littersMCMC)

> littersMCMC_CppSlittersMCMC(20000)
NHviBtEextensibte softwarefor
hierarchical models

User Experience: Specializing an Algorithm to a Model (2)

littersModelCode <- quote({ buildMCEM <- nimbleFunction(
for(j in 1:G) { while(runtime(converged == 0)) {
for(lin 1:N) { .
r(i, j1 ~ dbin(pli, j1, n[i, j1); calculate(model, paramDepDetermNodes)
p[i, j1 ~ dbeta(alj], b[j]); mcmcFun(memec.its, initialize = FALSE)
} currentParamVals[1:nParamNodes] <- getValues(model,paramNodes)
mulj] <- a[jl/(a[j] + b[j]); op <- optim(currentParamVals, objFun, maximum = TRUE)
theta[j] <- 1.0/(a[j] + b[j1); newParamVals <- opSmaximum
a[j] ~ dgamma(1, 0.001); || ...
b[j] ~ dgamma(1, 0.001);
})

> littersMCEM <- buildMCEM(littersModel, paramNodes = ¢(‘a’, ‘b’), latentNodes = ‘p’)
> littersMCEM_Cpp <- compileNIMBLE(littersModel, littersMCEM)

> set.seed(0)
> littersMCEM__CppSlittersMCEM(init = ¢(1000, 10, 100, 1), mcmclts = 1000, tol = 1e-6)

Modularity:

One can plug any MCMC sampler into the MCEM, with user control of the sampling strategy, in place
of the default MCMC.

NIMBLE: extensible software for
hierarchical models

Programmer Experience: NIMBLE Algorithm DSL

* BUGS is a Domain-Specific Language (DSL) for models
* NIMBLE provides a DSL for algorithms
* The DSL is a modified subset of R.
* We provide
* Basic types (double, boolean)
* Basic (vectorized) math and distribution/probability calculations
 Basic data storage classes (“modelValues”)
 Control structures — for loops and if-then-else
* Functions
* Linear algebra (via the Eigen package)
* Function definitions in the DSL include code for two steps:
* A general function is written for any model structure
* When a model is provided, a set of one-time (compile-time) processing is
executed based on the model structure
* Run-time code can use information determined from the compile-time
processing
* Compile-time processing is executed in R. Run-time processing can be
compiled to C++

Programmer Experience: Creating an Algorithm

———,

myAlgorithmGenerator <- nimbleFunction (

compileArgs = list(model, ...),

runTimeArgs = list(...),

setupCode = {

code that does the specialization of algorithm to model

5 sections to a
b ™ NIMBLE function.
runTimeCode = {

code that carries out the generic algorithm

b

returnType = double()
)

Programmer Experience: Metropolis Updater Example

updater.RW.Normal <- nimbleFunction(
compileArgs = list(model, savedValues, targetNode),
runTimeArgs = list(scale = double(default=0.1)),
setupCode = {
calcNodes <- getDependencies(model, targetNode) },
runTimeCode = {
origValue <- double(); propValue <- double(); logProbs <- double(2); jump <- int()

logProbs[2] <- getLogProb(model, calcNodes) # original value model logProb
propValue <- rnorm(1, mean = model[[targetNode]], sd = scale)

model[[targetNode]] <- propValue
logProbs[1] <- calculate(model, calcNodes) # proposal value model logProb

jump <- decide(logProbs[1] - logProbs[2])
if(runtime(jump)) {

copy(model, savedValues[[1]], calcNodes, logProb = TRUE)
} else {

copy(savedValues[[1]], model, calcNodes, logProb = TRUE)
}

return(jump)

7
returnType = int(),

)

NIMBLE in Action: the Litters Example

Beta-binomial for clustered binary response data

littersModelCode <- quote({
for(j in 1:G) {
for(lin 1:N) {
(i, j1 ~ dbin(pli, j1, ni, j1);
pli, j] ~ dbeta(al[j], b[j]);
}
mul[j] <-a[jl/(alj] + blj]);
thetalj] <- 1.0/(a[j] + b[j]);
a[j] ~ dgamma(1, 0.001);
b[j] ~ dgamma(1, 0.001);
1)

Challenges of the toy example:

O

Group j

(pyy) [

Litter i

* BUGS manual: “The estimates, particularly a,, a, suffer from extremely poor
convergence, limited agreement with m.l.e.”’s and considerable prior sensitivity. This
appears to be due primarily to the parameterisation in terms of the highly related a
and b, whereas direct sampling of mu; and theta; would be strongly preferable.”

e But that’s not all that’s going on. Consider the dependence between the p’s and

their a,, b; hyperparameters.

Tl

* And perhaps we want to do something other than MCMC.

Default MCMC: Gibbs + Metropolis

> littersMCMCspec <- MCMCspec(littersModel, adaptinterval = 100)
> littersMCMC <- buildMCMC(littersMCMCspec)

> littersMCMC_Cpp <- compileNIMBLE(littersModel, littersMCMC)

> littersMCMC_CppSlittersMCMC(10000)

b,

dp

© -
© -
< -
o -
o -
-
o-

T T
0c g1 O}

b,
MM‘-W N

_ _
009 00c O

i

I I I
0009 0007 0002 O
anndepe “JeaAlun

Blocked MCMC: Gibbs + Blocked Metropolis

> littersMCMCspec2 <- MCMCspec(littersModel, adaptinterval = 100)

> addUpdater(littersMCMspec2, updater(c(‘a[1]’, ‘b[1]’), ‘Rwblock’, rwinfo = list(scale = 0.1))
> addUpdater(littersMCMspec2, updater(c(‘a[2]’, ‘b[2]’), ‘Rwblock’, rwinfo = list(scale = 0.1))
> littersMCMC2 <- buildMCMC(littersMCMCspec2)

> littersMCMC2_Cpp <- compileNIMBLE(littersModel, littersMCMC2)

> littersMCMC2_CppSlittersMCMC2(10000)

o
o |
o
® ©
= o
= 5
oY
m —
=8
(U —
C - Al
-]
o o
[[[[[[[[[[[[
0 500 1500 2500 0 500 1500 2500
o
o |
(@]
©
] o
3 3
o 9O
o2
S -
So
o8 o
[aV} o
] Al
e [[[[[e [[[[[
0 500 1500 2500 0 500 1500 2500

R o
0 —
0 _]
~— <
- o
=
0 —
O_I I I I I C>_I I I I I
0 500 1500 2500 0 500 1500 2500

T 1 | | 1 | | |
0 500 1500 2500 0 500 1500 2500

Blocked MCMC: Gibbs + Cross-level Updaters

* Cross-level dependence is a key barrier in this and many other models.
* We wrote a new “cross-level” updater function using the NIMBLE DSL.

* The updater is a blocked Metropolis random walk on a set of
hyperparameters with conditional Gibbs updates on dependent
nodes (provided they are in a conjugate relationship).

* This is equivalent to integrating the dependent (latent) nodes out of
the model.

* We can then add this updater to an MCMC for a given model......

> littersMCMCspec3 <- MCMCspec(littersModel, adaptinterval = 100)

> topNodesl1 <- c('a[1]’, 'b[1]')
> addUpdater(littersMCMCspec3, updater(nodes = topNodes1, type='crossLevel’, auxinfo=list(lowerNodes =
getDependencies(littersModel, topNodes1, self = FALSE)

> topNodes2 <- c('a[2]', 'b[2]')
> addUpdater(littersMCMCspec3, updater(nodes = topNodes2, type='crossLevel’, auxinfo=list(lowerNodes =
getDependencies(littersModel, topNodes2, self = FALSE)

> littersMCMC3 <- buildMCMC(littersMCMCspec3)
> littersMCMC3_Cpp <- compileNIMBLE(littersModel, littersMCMC3)
> littersMCMC3_CppSlittersMCM3(10000)

univar. adaptive
2000 4000 6000

0

blocked
2000 4000 6000

0

2000 4000 6000

cross—level

0

a4
I I I I I I
0 500 1500 2500
I I I I I
0 500 1500 2500

T T | | |
0 500 1500 2500

600

0 200

600

0 200

600

0 200

T T | | | |
0 500 1500 2500
T T | | |
0 500 1500 2500

T T | | |
0 500 1500 2500

2 o
0 —
0 |
- <
- -
[N=
0 -
C>_I I I I I <D_I I I I I
0 500 1500 2500 0 500 1500 2500

T T |
0 500

| | | |
1500 2500 0 500 1500 2500

| | | |
2500 0 1500 2500

|
1500

500

Litters MCMC: BUGS and JAGS

* Erratum: BUGS and JAGS give similar performance to the default NIMBLE MCMC;
notes above based on permuted samples
* NIMBLE provides user control and transparency.
* NIMBLE is faster than JAGS on this example (if one ignores the compilation
time).
* Note: we’re not out to build the best MCMC but rather a flexible tool —
someone else could build a better default MCMC and distribute for use in our

system.
e Cautionary note: NIMBLE results are based on code under development.

Stepping outside the MCMC box:
maximum likelihood/empirical Bayes via MCEM

> littersMCEM <- buildMCEM(littersModel, paramNodes = ¢('a’, 'b'), latentNodes = 'p')
> littersMCEM_Cpp <- compileToCpp(littersModel, littersMCEM)

littersMCEM_CppSlittersMCEM(init = c(getValues(littersModel, 'a'), getValues(littersModel, 'b')), mcmc.its =
1E3, tol = 1E-3)

* Gives estimates consistent with direct ML estimation to 2-3
digits

* VERY slow to converge, analogous to MCMC mixing issues

» Stochasticity in the embedded MCMC makes this basic MCEM
unstable; a more sophisticated treatment should help here

Many algorithms are of a modular nature/combine other algorithms, e.g.
e particle MCMC

* normalizing constant algorithms

e posterior predictive simulations that are not just a drag on the MCMC

NIMBLE and modular modeling

Modular modeling involves working with multiple submodels in an
iterative and interactive workflow

— Nodes might be fixed at constant values

— Samples from one submodel may be used in another submodel

— Subgraphs may be updated on their own

— Simulation from the model may be useful
The NIMBLE system provides the flexibility for these sorts of
operations

— Model is an R object you can query and manipulate
* Functions to query the dependencies in a model

e Simulate from model
e Set values in the model
e Calculate density values for nodes

— Fixing nodes at constant values
— Choosing to update only certain nodes

— Cutting feedback

— Combining algorithms in a modular fashion, with the components run
as compiled C++ code

Paleoecology example

* Goal: predict vegetation composition from
pollen deposits in lake sediments

time
Vegetation data
Latent T T
Vegetation 2000 yrs b.p.[-»1500 yrs b.p.—» 1000 yrs b.p.-» —» —» 300 yrs b.p. |- Presen t day

Pollen data

Paleoecology example

Goal: predict vegetation composition from pollen
deposits in lake sediments

Calibration phase: “regress” pollen composition on
vegetation composition for time periods with
vegetation data

Prediction phase: predict vegetation in space-time
from pollen composition over thousands of years

Themes
— Modular models

— Cutting feedback

— Running prediction model for multiple samples of
calibration parameters

— Flexible manipulation of MCMC sampling schemes,
consideration of alternative algorithms

Paleoecology example

Calibration phase

Prediction phase

variance smoothing variance smoothing
i ' covariates '
components |] covartates parms components [™| parms
vegetation vegetation
heterogeneity composition scaling and composition
par'm process dispersal par'ms process

N\

vegetation likelihood

vegetation data

_/

pollen data

pollen likelihood

NIMBLE: extensible software for

hierarchical models

fixed parameters
drawn from
estimation run

posterior

scaling and
dispersal par'ms

/

pollen data

pollen likelihood

23

Status of NIMBLE and Next Steps

* Basic R package has been developed but lots to
do, including:
— Improved user interface
— Refinement/extension of the DSL for algorithms
— Extensions to the BUGS language
— Additional algorithms written in NIMBLE DSL

* Interested? We're starting an email list [mailto:
paciorek@berkeley.edu] and would like to
— start broadening our group of developers and
— initiate a group of users and algorithm programmers

* |nitial release date targeted for late spring/early
summer 2014.

