Extensible software for hierarchical modeling: using the NIMBLE platform to explore models and algorithms

Perry de Valpine (PI) Daniel Turek **Christopher Paciorek** Ras Bodík Duncan Temple Lang UC Berkeley Environmental Science, Policy and Managem't UC Berkeley Statistics and ESPM

UC Berkeley Statistics

UC Berkeley Electrical Engineering and Computer Science UC Davis Statistics

MCMSki 2014, Chamonix January, 2014

Funded by NSF DBI-1147230

Background and Goals

- Software for fitting Bayesian models has opened their use to a wide variety of communities
- Most software for fitting hierarchical models is either model-specific or algorithm-specific
- Software is often a black box and hard to extend
- Our goal is to divorce model specification from algorithm, while
 - Retaining BUGS compatibility
 - Providing a variety of standard algorithms
 - Allowing developers to add new algorithms (including modular combination of algorithms)
 - Allowing users to operate within R
 - Providing speed via compilation to C++, with R wrappers

Divorcing Model Specification from Algorithm

NIMBLE Design

- High-level processing in R (as much as possible)
 - Process BUGS language for declaring models (with some extensions)
 - Process model structure (node dependencies, conjugate relationships, etc.)
 - Generate and customize algorithm specifications
 - Generate model-specific C++ code to be compiled on the fly
 - Provide matching implementation in R for prototyping / debugging / testing
 - Some high-level algorithm control possible in R (adapting tuning parameters, monitoring convergence, high levels of iteration)
- Low-level processing in C++
 - Model and algorithm computations
 - "Run-time" parameters allow some modification of behavior without recompiling

User Experience: Processing a BUGS Model

> littersModel <- BUGSmodel(littersModelCode, setupData = list(N = 16, G = 2, n = data))

Provides variables and functions for algorithms to use.

User Experience: Specializing an Algorithm to a Model

<pre>littersModelCode <- quote({ for(j in 1:G) { for(l in 1:N) { r[i, j] ~ dbin(p[i, j], n[i, j]); p[i, j] ~ dbeta(a[j], b[j]); } mu[j] <- a[j]/(a[j] + b[j]); theta[j] <- 1.0/(a[j] + b[j]); a[j] ~ dgamma(1, 0.001); b[j] ~ dgamma(1, 0.001); }</pre>	updater.RW.Normal <- nimbleFunction(origValue <- model[[targetNode]] propValue <- rnorm(1, mean = origValue, sd = scale) logProbCurrent <- getLogProb(model, calcNodes) model[[targetNode]] <- probValue logProbProposed <- calculate(model, calcNodes) logProbProposal <- dnorm(propValue, mean = origValue, sd = scale, log = TRUE)
--	---

> littersMCMCspec <- MCMCspec(littersModel, adaptInterval = 100)

> getUpdaters(littersMCMCspec)

Updater for nodes: beta

type: RW

rwInfo (list):

```
--> 'scale' (numeric): 0.1
```

--> 'adapt' (logical): TRUE

```
--> 'propCov' (character): identity
```

```
[...snip...]
```

```
> addUpdater(littersMCMCspec, updater(c('a', 'b'), 'Rwblock', rwInfo = list(scale = 0.1))
```

```
> addMonitor(littersMCMCspec, 'a'); addMonitor(littersMCMCspec, 'b')
```

```
> littersMCMC <- buildMCMC(littersMCMCspec)
```

```
> littersMCMC_Cpp <- compileToCpp(littersModel, littersMCMC)</pre>
```

> littersMCMC_Cpp\$littersMCMC(20000)

User Experience: Specializing an Algorithm to a Model (2)

```
littersModelCode <- quote({
                                             buildMCEM <- nimbleFunction(</pre>
                                              while(runtime(converged == 0)) {
 for(j in 1:G) {
  for(I in 1:N) {
      r[i, j] ~ dbin(p[i, j], n[i, j]);
                                                 calculate(model, paramDepDetermNodes)
      p[i, j] \sim dbeta(a[j], b[j]);
                                                 mcmcFun(mcmc.its, initialize = FALSE)
                                                 currentParamVals[1:nParamNodes] <- getValues(model,paramNodes)</pre>
                                                 op <- optim(currentParamVals, objFun, maximum = TRUE)</pre>
  mu[i] <- a[i]/(a[i] + b[i]);
  theta[i] <- 1.0/(a[i] + b[i]);
                                                 newParamVals <- op$maximum
  a[j] \sim dgamma(1, 0.001);
                                             ....
  b[j] \sim dgamma(1, 0.001);
})
```

```
> littersMCEM <- buildMCEM(littersModel, paramNodes = c('a', 'b'), latentNodes = 'p')</pre>
```

```
> littersMCEM_Cpp <- compileNIMBLE(littersModel, littersMCEM)</pre>
```

> set.seed(0)

> littersMCEM_Cpp\$littersMCEM(init = c(1000, 10, 100, 1), mcmclts = 1000, tol = 1e-6)

Modularity:

One can plug any MCMC sampler into the MCEM, with user control of the sampling strategy, in place of the default MCMC.

Programmer Experience: NIMBLE Algorithm DSL

- BUGS is a Domain-Specific Language (DSL) for models
- NIMBLE provides a DSL for algorithms
 - The DSL is a modified subset of R.
- We provide
 - Basic types (double, boolean)
 - Basic (vectorized) math and distribution/probability calculations
 - Basic data storage classes ("modelValues")
 - Control structures for loops and if-then-else
 - Functions
 - Linear algebra (via the Eigen package)
- Function definitions in the DSL include code for two steps:
 - A general function is written for any model structure
 - When a model is provided, a set of one-time (compile-time) processing is executed based on the model structure
 - Run-time code can use information determined from the compile-time processing

• Compile-time processing is executed in R. Run-time processing can be compiled to C++ NIMBLE: extensible software for hierarchical models

Programmer Experience: Creating an Algorithm

myAlgorithmGenerator <- nimbleFunction (

```
compileArgs = list(model, ...),
```

```
runTimeArgs = list(...),
```

```
setupCode = {
```

code that does the specialization of algorithm to model

},

```
runTimeCode = {
```

code that carries out the generic algorithm

```
},
returnType = double()
```

5 sections to a
 NIMBLE function.

Programmer Experience: Metropolis Updater Example

```
updater.RW.Normal <- nimbleFunction(
  compileArgs = list(model, savedValues, targetNode),
  runTimeArgs = list(scale = double(default=0.1)),
  setupCode = {
     calcNodes <- getDependencies(model, targetNode) },
  runTimeCode = {
     origValue <- double(); propValue <- double(); logProbs <- double(2); jump <- int()</pre>
```

```
logProbs[2] <- getLogProb(model, calcNodes)  # original value model logProb
propValue <- rnorm(1, mean = model[[targetNode]], sd = scale)
model[[targetNode]] <- propValue
logProbs[1] <- calculate(model, calcNodes)  # proposal value model logProb</pre>
```

```
jump <- decide(logProbs[1] - logProbs[2])
if(runtime(jump)) {
    copy(model, savedValues[[1]], calcNodes, logProb = TRUE)
    } else {
    copy(savedValues[[1]], model, calcNodes, logProb = TRUE)
    }
    return(jump)
},
returnType = int(),</pre>
```

NIMBLE in Action: the Litters Example

Beta-binomial for clustered binary response data

```
littersModelCode <- quote({
  for(j in 1:G) {
    for(l in 1:N) {
        r[i, j] ~ dbin(p[i, j], n[i, j]);
        p[i, j] ~ dbeta(a[j], b[j]);
    }
    mu[j] <- a[j]/(a[j] + b[j]);
    theta[j] <- 1.0/(a[j] + b[j]);
    a[j] ~ dgamma(1, 0.001);
    b[j] ~ dgamma(1, 0.001);
})</pre>
```


Challenges of the toy example:

- BUGS manual: "The estimates, particularly a₁, a₂ suffer from extremely poor convergence, limited agreement with m.l.e.'s and considerable prior sensitivity. This appears to be due primarily to the parameterisation in terms of the highly related a_j and b_j, whereas direct sampling of mu_j and theta_j would be strongly preferable."
- But that's not all that's going on. Consider the dependence between the p's and their a_j, b_j hyperparameters.
- And perhaps we want to do something other than MCMC.

Default MCMC: Gibbs + Metropolis

> littersMCMCspec <- MCMCspec(littersModel, adaptInterval = 100)

> littersMCMC <- buildMCMC(littersMCMCspec)

> littersMCMC_Cpp <- compileNIMBLE(littersModel, littersMCMC)</pre>

> littersMCMC_Cpp\$littersMCMC(10000)

Blocked MCMC: Gibbs + Blocked Metropolis

> littersMCMCspec2 <- MCMCspec(littersModel, adaptInterval = 100)</pre>

> addUpdater(littersMCMspec2, updater(c('a[1]', 'b[1]'), 'Rwblock', rwInfo = list(scale = 0.1))

> addUpdater(littersMCMspec2, updater(c('a[2]', 'b[2]'), 'Rwblock', rwInfo = list(scale = 0.1))

> littersMCMC2 <- buildMCMC(littersMCMCspec2)

> littersMCMC2_Cpp <- compileNIMBLE(littersModel, littersMCMC2)

> littersMCMC2_Cpp\$littersMCMC2(10000)

Blocked MCMC: Gibbs + Cross-level Updaters

- Cross-level dependence is a key barrier in this and many other models.
- We wrote a new "cross-level" updater function using the NIMBLE DSL.
 - The updater is a blocked Metropolis random walk on a set of hyperparameters with conditional Gibbs updates on dependent nodes (provided they are in a conjugate relationship).
 - This is equivalent to integrating the dependent (latent) nodes out of the model.
- We can then add this updater to an MCMC for a given model.....

```
> littersMCMCspec3 <- MCMCspec(littersModel, adaptInterval = 100)
```

```
> topNodes1 <- c('a[1]', 'b[1]')
```

```
> addUpdater(littersMCMCspec3, updater(nodes = topNodes1, type='crossLevel', auxInfo=list(lowerNodes =
    getDependencies(littersModel, topNodes1, self = FALSE)
```

```
> topNodes2 <- c('a[2]', 'b[2]')
```

```
> addUpdater(littersMCMCspec3, updater(nodes = topNodes2, type='crossLevel', auxInfo=list(lowerNodes =
    getDependencies(littersModel, topNodes2, self = FALSE)
```

```
> littersMCMC3 <- buildMCMC(littersMCMCspec3)</pre>
```

> littersMCMC3_Cpp <- compileNIMBLE(littersModel, littersMCMC3)

```
> littersMCMC3_Cpp$littersMCM3(10000)
```


NIMBLE: extensible software for hierarchical models

Litters MCMC: BUGS and JAGS

- BUGS gives results as good or better than our cross-level MCMC.
 - I believe that BUGS must be, in essence, integrating over the latent nodes to achieve this.
 - However, without examining the source code, it's unclear what is going on.
- JAGS seems to perform well for the identifiable quantities.
 - But different runs give different posterior estimates for the poorly-identified a_j and b_i parameters.
 - Again, without examining the source code, it's unclear what is going on.
- Erratum: BUGS and JAGS give similar performance to the default NIMBLE MCMC; notes above based on permuted samples
- NIMBLE provides user control and transparency.
 - NIMBLE is faster than JAGS on this example (if one ignores the compilation time).
 - Note: we're not out to build the best MCMC but rather a flexible tool someone else could build a better default MCMC and distribute for use in our system.
- Cautionary note: NIMBLE results are based on code under development.

Stepping outside the MCMC box: maximum likelihood/empirical Bayes via MCEM

> littersMCEM <- buildMCEM(littersModel, paramNodes = c('a', 'b'), latentNodes = 'p')
> littersMCEM_Cpp <- compileToCpp(littersModel, littersMCEM)</pre>

```
littersMCEM_Cpp$littersMCEM(init = c(getValues(littersModel, 'a'), getValues(littersModel, 'b')), mcmc.its =
1E3, tol = 1E-3)
```

- Gives estimates consistent with direct ML estimation to 2-3 digits
- VERY slow to converge, analogous to MCMC mixing issues
- Stochasticity in the embedded MCMC makes this basic MCEM unstable; a more sophisticated treatment should help here

Many algorithms are of a modular nature/combine other algorithms, e.g.

- particle MCMC
- normalizing constant algorithms
- posterior predictive simulations that are not just a drag on the MCMC

NIMBLE and modular modeling

- Modular modeling involves working with multiple submodels in an iterative and interactive workflow
 - Nodes might be fixed at constant values
 - Samples from one submodel may be used in another submodel
 - Subgraphs may be updated on their own
 - Simulation from the model may be useful
- The NIMBLE system provides the flexibility for these sorts of operations
 - Model is an R object you can query and manipulate
 - Functions to query the dependencies in a model
 - Simulate from model
 - Set values in the model
 - Calculate density values for nodes
 - Fixing nodes at constant values
 - Choosing to update only certain nodes
 - Cutting feedback
 - Combining algorithms in a modular fashion, with the components run as compiled C++ code

Paleoecology example
Goal: predict vegetation composition from pollen deposits in lake sediments

Pollen data

Paleoecology example

- Goal: predict vegetation composition from pollen deposits in lake sediments
- Calibration phase: "regress" pollen composition on vegetation composition for time periods with vegetation data
- Prediction phase: predict vegetation in space-time from pollen composition over thousands of years
- Themes
 - Modular models
 - Cutting feedback
 - Running prediction model for multiple samples of calibration parameters
 - Flexible manipulation of MCMC sampling schemes, consideration of alternative algorithms

Paleoecology example

Status of NIMBLE and Next Steps

- Basic R package has been developed but lots to do, including:
 - Improved user interface
 - Refinement/extension of the DSL for algorithms
 - Extensions to the BUGS language
 - Additional algorithms written in NIMBLE DSL
- Interested? We're starting an email list [mailto: paciorek@berkeley.edu] and would like to
 - start broadening our group of developers and
 - initiate a group of users and algorithm programmers
- Initial release date targeted for late spring/early summer 2014.