Beyond the black box:
Flexible algorithm programming
for ecological models in NIMBLE

Christopher Paciorek UC Berkeley Statistics

Colin Lewis-Beck
Perry de Valpine (PI)
Daniel Turek

Lauren Ponisio

Nick Michaud

Joint work with:
lowa State Statistics / Google Summer of Code 2017
UC Berkeley Environmental Science, Policy and Management
Williams College, Mathematics and Statistics
UC Riverside Entomology
UC Berkeley Statistics and ESPM

https://r-nimble.org

https://r-nimble.org/

What do we want to do with hierarchical models?

. More and better MCMC

Many different samplers
Better adaptive algorithms

. Numerical integration

Laplace approximation
Adaptive Gaussian quadrature
Hidden Markov models

. Maximum likelihood estimation

5. Normalizing constants (AIC or

Bayes Factors)

Importance sampling
Bridge sampling
Others

. Model assessment

Monte Carlo EM
Data cloning
Monte Carlo Newton-Raphson

. Sequential Monte Carlo

Auxiliary Particle Filter
Ensemble Kalman Filter
Unscented Kalman Filter

Bootstrapping

Calibrated posterior predictive
checks

Cross-validation

Posterior re-weighting

. Idea cominbations

PF + MCMC
Resample-move
MCMC + Laplace/quadrature

These are just some ideas from a vast literature.

NIMBLE: extensible software for
hierarchical models (r-nimble.org)

NIMBLE

Model language (BUGS/JAGS) Algorithm Language

Oa OO

NIMBLE makes BUGS extensible from R:
* Add new functions

* Add new distributions

e Call external code

NIMBLE: extensible software for
hierarchical models (r-nimble.org)

Goals

— Retaining BUGS compatibility

— Making BUGS more flexible

— Providing a variety of standard algorithms

— Allowing users to easily modify those algorithms

— Allowing developers to add new algorithms
(including modular combination of algorithms)

— Allowing users to operate within R

— Providing speed via compilation to C++, with R
wrappers

NIMBLE: extensible software for
hierarchical models (r-nimble.org)

NIMBLE

1. Model specification

BUGS language = R/C++ model object

2. Algorithm library

MCMC, Particle Filter/Sequential MC, MCEM, etc.

3. Algorithm specification

NIMBLE programming language within R =» R/C++
algorithm object

NIMBLE’s algorithm library

— MCMC samplers:

e Conjugate, adaptive Metropolis, adaptive blocked
Metropolis, slice, elliptical slice sampler, particle
MCMC, specialized samplers for particular distributions
(Dirichlet, CAR, Chinese Restaurant Process)

* Flexible choice of sampler for each parameter
* User-specified blocks of parameters
* Cross-validation, WAIC

— Sequential Monte Carlo (particle filters)

* Various flavors

— Write your own / easily modify ours

NIMBLE in Ecology

— User-defined distributions for integrating over
high-dimensional discrete latent states

 E.g., capture-recapture, occupancy models

— Flexibility in coding numerical tricks within a BUGS
model for faster computation
— User choice of samplers and blocking

— Users can modify and add custom samplers for
use in combination with NIMBLE’s samplers

— Useful model selection/assessment tools:
 WAIC
* calibrated posterior predictive p-values
* reversible jump

NIMBLE: extensible software for
hierarchical models (r-nimble.org)

Multi-state capture-recapture: geese

— N=11,200 Canada geese

— 3 locations of ‘capture’ (i.e., sighting)
— 4 years of data

— 153 unique sighting histories

(survival) ¢r ~ Uniform(0, 1) r=1,2,3
(movement) {®1st, Yast, U3st) ~ Dirichlet(a = {1,1,1}) s=1,2.3, t=223.4
(detection) prt ~ Uniform(0, 1) r=123 t=1,22314
Xi1 = ya
(site location, dead) X | X;;—1 ~ Categorical(p =T} ;1) t=2,...k
(site observed, not seen) Yit | Xit ~ Categorical(p = Z; xi) t=1.....k

— Data: Armstrup et al. (2010) Handbook of Capture-Recapture Analysis
— Methods: Turek et al (2016), Env. Ecol. Stat.

NIMBLE: extensible software for 8
hierarchical models (r-nimble.org)

Multi-state capture-recapture: filtering

— 14,437 latent variables + 21 parameters

— Discrete filtering to numerically integrate (i.e.,
sum) over latent variables

Filtering equations Matrix formulation

Pt(l’) = Pl'(Xt =T | yl:t—l) P T 2

=1, C)i_1. t >

— Z Pl‘(Xt =T ‘ Xt—l = It—l) Pl'(Xt_l — Tt | yl:t—l) t t Qt 1) o

Ti_1EX
Qt:Zt<yt),*Pt/Lt: ZLZ 1
Qt(l’) = Pl‘(Xt =z | !Jl;t) L‘t = Zl‘(yt) Pt, t Z 1
= Pr(Xe = 2{yr) PrVe =y | Xo = 2)/Pr(Ye = g | y10-1) Marginalized likelihood:

Ly =Pr(Yy = e | y14-1) L(e ’ y) — L1L2 T ij

— Z Pl‘(Yt = Ut | Xy = It) P1'<Xt = Iy | yl:t—l)

r.e X

Multi-state capture-recapture: MCMC

— Embed filtering as a user-defined distribution in BUGS code

code <- nimbleCode({
##HE ... priors for ‘p’, ‘phi’, ‘psi’ ###

Z[1:4,1:4,1:4] <- calcZ(p[1:6])
T[1:4,1:4,1:4] <- calcT(phi[1:3], psi[1:3,1:3,1:2])

for (i in 1:nind) {
y[i, first[i]:k] ~ dDHMM(length = k-first[i]+1, prior = prior[1:4], condition =
condition[1:4], Z = Z[1:k,1:k/first[i]:k], useZt = 1, T = T[1:k,1:k first[i]:k], useTt = 1,
mult = mult[i])

}
1)

— 70-fold improvement in MCMC (including using weighted
likelihood with unique sample histories)

Multi-state capture-recapture: MCMC (2)

Easily try out various samplers

conf <- configureMCMC(Rmodel) ## setup default MCMC samplers
confSprintSamplers()

#[1] RW sampler: p[1]

#..

#[21] RW sampler: psi[2, 3, 2]

nodes <- RmodelSgetNodeNames(stochOnly = TRUE, includeData = FALSE)

confSremoveSamplers(nodes) ## remove default samplers
for(node in nodes) {

confSaddSampler(node, type = 'slice’) ## add slice samplers
}
Rmcmc <- buildMCMC(conf) ## build MCMC algorithm
Cmcmc <- compileNimble(Rmcmc) ## compile MCMC algorithm
runMCMC(Cmcmc, 10000) ## run MCMC

Easily block parameters
nodes <- list(c(‘psi[1,1,1]’,)/psi[2,1,1]’), ## highly-correlated parameters (corr > 0.9)
c(‘psi[1,2,1])psi[2,2,1]"),
c(‘psi[1,1,2]))psil2,1,2]'))
for(i in seq_along(nodes)) {
confSremoveSamplers(nodes][i]])
confSaddSampler(nodes|[i]], type = 'RW_block’) ## use block sampling for highly-correlated parameters
}

build, compile and run as above

NIMBLE: extensible software for

11
hierarchical models (r-nimble.org)

Multi-state capture-recapture: Results

MCMC performance aggregated across 21 parameters based
on effective sample size with 10,000 iterations

Filtering Filtering + Filtering +
(Metropolis) | Slice Blocking

Minimum ESS

Mean ESS 294 1173 340

NIMBLE: extensible software for

hierarchical models (r-nimble.org) =

Multi-state capture-recapture: Results

MCMC performance aggregated across 21 parameters based
on effective sample size with 10,000 iterations

Filtering Filtering + Filtering +
(Metropolis) | Slice Blocking

Minimum ESS

Mean ESS 294 1173 340
Minimum 0.7 0.7 5.9
ESS/second

Mean 7.8 7.6 16.7

ESS/second

NIMBLE: extensible software for

hierarchical models (r-nimble.org) =

Spatial capture- recapture voles

Field voles in a forest in northern England
Data from summer 2000

N=158 tagged voles

Spatial grid of traps: 192 traps on 11x18 grid
20 observation periods

Interest lies in understanding demographics,
including survival and movement

Model for each individual:
* Latent state: alive or dead/emigrated at each time
* Latent activity center at each time
* Dispersal kernel to model movement from time to time
* Detection and survival probabilities

Work by: Daniel Turek (NIMBLE), Torbjgrn Ergon (University of Oslo)

NIMBLE: extensible software for
hierarchical models (r-nimble.org)

14

Spatial capture-recapture: computation

Computational strategies enabled by NIMBLE:

1. Custom BUGS distribution: Integrate over latent alive/dead
status via discrete filtering (see goose example).

2. Custom BUGS distribution: Move computation of dispersal into
a second user-defined distribution to remove parameters and
reduce model size.

3. Custom BUGS function: Carefully limit computations of “trap
exposure” to avoid doing all pairwise computations of
probabilities of each individual being caught in each trap.

Spatial capture-recapture: computation

2. Custom BUGS distribution: Move computation of dispersal into
a second user-defined distribution to remove parameters and
reduce model size

Original BUGS code:
for(k in first[i]:(last[i]-1)) {
thetali, k] ~ dunif(-3.141593, 3.141593) # dispersal direction
d[i, k] ~ dexp(dlambdalgrlil]) # dispersal distance
S[i, 1, k+1] <- S[i, 1, k] + d[i, k] * cos(thetali, k]) # evolution of activity center
SIi, 2, k+1] <- S[i, 2, k] + d[i, k] * sin(thetali, k])
}
Revised BUGS code:
for(k in first[i]:(last[i]-1)) {
S[i, 1:2, k+1] ~ dSS(S[i, 1:2, k], dlambdalgr[i]]) # direct distribution over center
}

Spatial capture-recapture: computation

3. Custom BUGS functions: Carefully limit computations of “trap
exposure” to avoid doing all pairwise computations of
probabilities of each individual being caught in each trap.

* Original BUGS code:
for(k in first[i]:last[i]) {
DI[i, k, 1:R] <- sqrt((S[i, 1, k] - X[1:R, 12 + (S]i, 2, K] - X[1:R, 2])*2)
ali, k, 1:R] <- exp(-(D[i, k, 1:R]/sigmal[gr[i]])*kappalgr[i]]) # trap exposure
Gli, K] <- sum(gl[i, k, 1:R]) # total trap exposure
}
- Revised BUGS code:

* Replace middle line with calls to user-defined functions that implement efficient
algorithms for computing only the probabilities of an individual being trapped
near to the current activity center

gli, k, 1:R] <- calcLocalTrapExposure(localTrapIndices, ...)

* Cache determination of nearby traps as part of model graph to limit

recalculation
localTrapIndicesli, k, 1:MaxNumberLocalTraps] <- getLocalTraplindices(...)

Spatial capture-recapture: computation

Time per single effectively independent sample

0. Default model (full latent state model)
5 minutes / sample
1. Custom BUGS distribution: Integrate over latent alive/dead status via
discrete filtering (see goose example).
40 seconds / sample
2. Custom BUGS distribution: Move computation of dispersal into a second
user-defined distribution to remove parameters and reduce model size.
21 seconds / sample
3. Custom BUGS function: Carefully limit computations of “trap exposure” to
avoid doing all pairwise computations of probabilities of each individual
being caught in each trap.
8 seconds per sample

Model-generic algorithm programming

Wanted: a Metropolis-Hastings sampler with normal random-walk proposals.

@ ® o
@@ @ G

Model A Model B Model C

Challenge: It should work for any node of any model.
Solution: Two-stage evaluation.

NIMBLE: Model-generic programming

sampler_myRW <- nimbleFunction(

setup = function(model, mvSaved, targetNode, scale) { |
calcNodes <- modelSgetDependencies(targetNode)

3

run = function() {
model_Ip initial <- calculate(model, calcNodes)
proposal <- rnorm(1, model[[targetNode]], scale) 2 kinds of
model[[targetNode]] <<- proposal __functions
model_Ip proposed <- calculate(model, calcNodes)
log_ MH_ratio <- model_|p_proposed - model_|p_initial

if(decide(log_ MH_ratio)) jump <- TRUE
else jump <- FALSE
.... Various bookkeeping operations ... # })

NIMBLE: Model-generic programming

sampler_myRW <- nimbleFunction(

setup = function(model, mvSaved, targetNode, scale) { query model
calcNodes <- modelSgetDependencies(targetNode) ¢ structure

b ONCE

run = function() {
model_Ip initial <- calculate(model, calcNodes)
proposal <- rnorm(1, model[[targetNode]], scale)
model[[targetNode]] <<- proposal
model_Ip proposed <- calculate(model, calcNodes)
log_ MH_ratio <- model_|p_proposed - model_|p_initial

if(decide(log_MH_ratio)) jump <- TRUE
else jump <- FALSE
.... Various bookkeeping operations ... # })

NIMBLE: extensible software for

hierarchical models (r-nimble.org) =

NIMBLE: Model-generic programming

sampler_myRW <- nimbleFunction(

setup = function(model, mvSaved, targetNode, scale) {
calcNodes <- modelSgetDependencies(targetNode)

1

run = function() { M
model_Ip initial <- calculate(model, calcNodes)
proposal <- rnorm(1, model[[targetNode]], scale) the actual
model[[targetNode]] <<- proposal (generic)
model_Ip proposed <- calculate(model, calcNodes) algorithm

S—

log MH_ratio <- model_Ip_proposed - model_Ip_initial

if(decide(log_ MH_ratio)) jump <- TRUE
else jump <- FALSE
.... Various bookkeeping operations ... # })

—

NIMBLE: extensible software for

hierarchical models (r-nimble.org) =

The NIMBLE compiler (run code)

Feature summary:
e R-like matrix algebra (using Eigen library)
* R-like indexing (e.g. X[1:5,])
 Use of model variables and nodes
 Model calculate (logProb) and simulate functions
* Sequential integer iteration
* If-then-else, do-while
* Access to much of Rmath.h (e.g. distributions)
* Call out to your own C/C++ or back to R
* Many improvements / extensions planned
e Derivatives (coming soon)

C++

NIMBLE software stack

NIMBLE (Models)

igraph

v

R
packages

NIMBLE (Algorithm NIMBLE (User
Library) Algorithms)

A

NIMBLE Compiler / R

Generated C++

N/ Y

NIMBLE C++ : CppAD
E
library 'een e (Soon)

o~ V'

C++ Compiler

NIMBLE: extensible software for
hierarchical models (r-nimble.org)

NIMBLE: What can | program?

Your own distribution for use in a model
Your own function for use in a model

Your own MCMC sampler for a variable in a
model

A new MCMC sampling algorithm for general
use

A new algorithm for hierarchical models

An algorithm that composes other existing
algorithms (e.g., MCMC-SMC combinations)

NIMBLE in Ecology

— User-defined distributions for integrating over
high-dimensional discrete latent states

* To be provided in forthcoming nimbleEcology R package

— Flexibility in coding numerical tricks within a BUGS
model for faster computation

— User choice of samplers and blocking

— Users can modify and add custom samplers for
use in combination with NIMBLE’s samplers

— Useful model selection/assessment tools: WAIC
(in NIMBLE), calibrated posterior predictive p-
values (nearing release), reversible jump (see r-
nimble.org example)

Status of NIMBLE and Next Steps

* First release was June 2014 with regular releases since. Lots to do:

Improve the user interface and speed up compilation (in progress)
Scalability for large models (in progress)
Ongoing Bayesian nonparametrics with Claudia Wehrhahn & Abel Rodriguez

Refinement/extension of the DSL for algorithms (in progress)
* e.g., automatic differentiation, parallelization

Additional algorithms written in NIMBLE DSL

* e.g., normalizing constant calculation, Laplace approximations, Hamiltonian MC

e |Interested?

We have funding for a postdoc or programmer

We have funding to bring selected users to Berkeley for intensive
collaboration

Announcements: nimble-announce Google site
User support/discussion: nimble-users Google site
Write an algorithm using NIMBLE!

Help with development of NIMBLE: email nimble.stats@gmail.com or see
github.com/nimble-dev

https://groups.google.com/forum/
https://groups.google.com/forum/
mailto:nimble.stats@gmail.com

